Macdonald DM, Palzer EF, Abbasi A, Baldomero AK, Bhatt SP, Casaburi R, Connett JE, Dransfield MT, Mkorombindo T, Rossiter HB, Stringer WW, Tiller NB, Wendt CH, Zhao D, Kunisaki KM. Chronotropic Index During 6-Minute Walk and Acute Respiratory Events in COPDGene. Respir Med, 2022. 194:106775.

Background: Lower heart rate (HR) increases during exercise and slower HR recovery (HRR) after exercise are markers of worse autonomic function that may be associated with risk of acute respiratory events (ARE). Methods: Data from 6-min walk testing (6MWT) in COPDGene were used to calculate the chronotropic index (CI) [(HR immediately post 6MWT - resting HR)/((220 - age) - resting HR)] and HRR at 1 min after 6MWT completion. We used zero-inflated negative binomial regression to test associations of CI and HRR with rates of any ARE (requiring steroids and/or antibiotics) and severe ARE (requiring emergency department visit or hospitalization), among all participants and in spirometry subgroups (normal, chronic obstructive pulmonary disease [COPD], and preserved ratio with impaired spirometry). Results: Among 4,484 participants, mean follow-up time was 4.1 years, and 1,966 had COPD. Among all participants, CI-6MWT was not associated with rate of any ARE [adjusted incidence rate ratio (aIRR) 0.98 (0.95-1.01)], but higher CI-6MWT was associated with lower rate of severe ARE [0.95 (0.92-0.99)]. Higher HRR was associated with a lower rate of both any ARE [0.97 (0.95-0.99)] and severe ARE [0.95 (0.92-0.98)]. Results were similar in the COPD spirometry subgroup. Conclusion: Heart rate measures derived from 6MWT tests may have utility in predicting risk of acute respiratory events and COPD exacerbations.

Scheer V, Tiller NB, Doutreleau S, Khodaee M, Knechtle B, Pasternak A, Rojas-Valverde D. Potential Long-Term Health Problems Associated with Ultra-Endurance Running: A Narrative Review. Sports Med, 2022. 52(4).

It is well established that physical activity reduces all-cause mortality and can prolong life. Ultra-endurance running (UER) is an extreme sport that is becoming increasingly popular, and comprises running races above marathon distance, exceeding 6 h, and/or running fixed distances on multiple days. Serious acute adverse events are rare, but there is mounting evidence that UER may lead to long-term health problems. The purpose of this review is to present the current state of knowledge regarding the potential long-term health problems derived from UER, specifically potential maladaptation in key organ systems, including cardiovascular, respiratory, musculoskeletal, renal, immunological, gastrointestinal, neurological, and integumentary systems. Special consideration is given to youth, masters, and female athletes, all of whom may be more susceptible to certain long-term health issues. We present directions for future research into the pathophysiological mechanisms that underpin athlete susceptibility to long-term issues. Although all body systems can be affected by UER, one of the clearest effects of endurance exercise is on the cardiovascular system, including right ventricular dysfunction and potential increased risk of arrhythmias and hypertension. There is also evidence that rare cases of acute renal injury in UER could lead to progressive renal scarring and chronic kidney disease. There are limited data specific to female athletes, who may be at greater risk of certain UER-related health issues due to interactions between energy availability and sex-hormone concentrations. Indeed, failure to consider sex differences in the design of female-specific UER training programs may have a negative impact on athlete longevity. It is hoped that this review will inform risk stratification and stimulate further research about UER and the implications for long-term health.

Zhao D, Abbasi A, Casaburi R, Adami A, Tiller NB, Yuan W, Yee C, Jendzjowsky NG, MacDonald DM, Kunisaki KM, Stringer WW, Porszasz J, Make BJ, Bowler RP, Rossiter HB.Identifying a Heart Rate Recovery Criterion After a 6-Minute Walk Test in COPD. Int J Chron Obstruct Pulmon Dis, 2021. 4;16.

Background: Slow heart rate recovery (HRR) after exercise is associated with autonomic dysfunction and increased mortality. What HRR criterion at 1-minute after a 6-minute walk test (6MWT) best defines pulmonary impairment? Study design and methods: A total of 5008 phase 2 COPDGene participants with smoking history were included. A total of 2127 had COPD and, of these, 385 were followed-up 5-years later. Lung surgery, transplant, bronchiectasis, atrial fibrillation, heart failure and pacemakers were exclusionary. HR was measured from pulse oximetry at end-walk and after 1-min seated recovery. A receiver operator characteristic (ROC) identified optimal HRR cut-off. Generalized linear regression determined HRR association with spirometry, chest CT, symptoms and exacerbations. Results: HRR after 6MWT (bt/min) was categorized in quintiles: ≤5 (23.0% of participants), 6-10 (20.7%), 11-15 (18.9%), 16-22 (18.5%) and ≥23 (18.9%). Compared to HRR≤5, HRR≥11 was associated with (p<0.001): lower pre-walk HR and 1-min post HR; greater end-walk HR; greater 6MWD; greater FEV1%pred; lower airway wall area and wall thickness. HRR was positively associated with FEV1%pred and negatively associated with airway wall thickness. An optimal HRR ≤10 bt/min yielded an area under the ROC curve of 0.62 (95% CI 0.58-0.66) for identifying FEV1<30%pred. HRR≥11 bt/min was the lowest HRR associated with consistently less impairment in 6MWT, spirometry and CT variables. In COPD, HRR≤10 bt/min was associated with (p<0.001): ≥2 exacerbations in the previous year (OR=1.76[1.33-2.34]); CAT≥10 (OR=1.42[1.18-1.71]); mMRC≥2 (OR=1.42[1.19-1.69]); GOLD 4 (OR=1.98[1.44-2.73]) and GOLD D (OR=1.51[1.18-1.95]). HRR≤10 bt/min was predicted COPD exacerbations at 5-year follow-up (RR=1.83[1.07-3.12], P=0.027). Conclusion: HRR≤10 bt/min after 6MWT in COPD is associated with more severe expiratory flow limitation, airway wall thickening, worse dyspnoea and quality of life, and future exacerbations, suggesting that an abnormal HRR≤10 bt/min after a 6MWT may be used in a comprehensive assessment in COPD for risk of severity, symptoms and future exacerbations.

Kingston T, Tiller NB, Partington E, Ahmed M, Jones G, Johnson MI, Callender NA. Sports safety matting diminishes cardiopulmonary resuscitation quality and increases rescuer perceived exertion. PLoS One, 2021. 22;16(7).

Objectives: Compliant surfaces beneath a casualty diminish the quality of cardiopulmonary resuscitation (CPR) in clinical environments. To examine this issue in a sporting environment, we assessed chest compression quality and rescuer exertion upon compliant sports safety matting. Methods: Twenty-seven advanced life support providers volunteered (13 male/14 female; mass = 79.0 ± 12.5 kg; stature = 1.77 ± 0.09 m). Participants performed 5 × 2 min, randomized bouts of continuous chest compressions on a mannequin, upon five surfaces: solid floor; low-compliance matting; low-compliance matting with a backboard; high-compliance matting; high-compliance matting with a backboard. Measures included chest compression depth and rate, percentage of adequate compressions, and rescuer heart rate and perceived exertion. Results: Chest compression depth and rate were significantly lower upon high-compliance matting relative to other surfaces (p<0.05). The percentage of adequate compressions (depth ≥50 mm) was lowest upon high-compliance matting (40 ± 39%) versus low-compliance matting (60 ± 36%) and low-compliance matting with a backboard (59 ± 39%). Perceived exertion was significantly greater upon high-compliance matting versus floor, low-compliance matting, and low-compliance matting with a backboard (p<0.05). Conclusion: Providers of CPR should be alerted to the detrimental effects of compliant safety matting in a sporting environment and prepare to alter the targeted compression depth and rescuer rotation intervals accordingly.

Tiller NB, Cao M, Lin F, Yuan W, Wang CY, Abbasi A, Calmelat R, Soriano A, Rossiter HB, Casaburi R, Stringer WW, Porszasz J. Dynamic airway function during exercise in COPD assessed via impulse oscillometry before and after inhaled bronchodilators. J Appl Physiol, 2021. 131(1):326-338.

Assessing airway function during exercise provides useful information regarding mechanical properties of the airways and the extent of ventilatory limitation in COPD. The primary aim of this study was to use impulse oscillometry (IOS) to assess dynamic changes in airway impedance across a range of exercise intensities in patients with GOLD 1-4, before and after albuterol administration. A secondary aim was to assess the reproducibility of IOS measures during exercise. Fifteen patients with COPD (8 males/7 females; age = 66 ± 8 yr; prebronchodilator FEV1 = 54.3 ± 23.6%Pred) performed incremental cycle ergometry before and 90 min after inhaled albuterol. Pulmonary ventilation and gas exchange were measured continuously, and IOS-derived indices of airway impedance were measured every 2 min immediately preceding inspiratory capacity maneuvers. Test-retest reproducibility of exercise IOS was assessed as mean difference between replicate tests in five healthy subjects (3 males/2 females). At rest and during incremental exercise, albuterol significantly increased airway reactance (X5) and decreased airway resistance (R5, R5-R20), impedance (Z5), and end-expiratory lung volume (60% ± 12% vs. 58% ± 12% TLC, main effect P = 0.003). At peak exercise, there were moderate-to-strong associations between IOS variables and IC, and between IOS variables and concavity in the expiratory limb of the spontaneous flow-volume curve. Exercise IOS exhibited moderate reproducibility in healthy subjects which was strongest with R5 (mean diff. = -0.01 ± 0.05 kPa/L/s; ICC = 0.68), R5-R20 (mean diff. = -0.004 ± 0.028 kPa/L/s; ICC = 0.65), and Z5 (mean diff. = -0.006 ± 0.021 kPa/L/s; ICC = 0.69). In patients with COPD, exercise evoked increases in airway resistance and decreases in reactance that were ameliorated by inhaled bronchodilators. The technique of exercise IOS may aid in the clinical assessment of dynamic airway function during exercise.

Tiller NB, Elliott-Sale KJ, Knechtle B, Wilson PB, Roberts JD, Millet GY. Do Sex Differences in Physiology Confer a Female Advantage in Ultra-Endurance Sport? Sports Med, 2021. 51(5):895-915.

Ultra-endurance has been defined as any exercise bout that exceeds 6 h. A number of exceptional, record-breaking performances by female athletes in ultra-endurance sport have roused speculation that they might be predisposed to success in such events. Indeed, while the male-to-female performance gap in traditional endurance sport (e.g., marathon) remains at ~ 10%, the disparity in ultra-endurance competition has been reported as low as 4% despite the markedly lower number of female participants. Moreover, females generally outperform males in extreme-distance swimming. The issue is complex, however, with many sports-specific considerations and caveats. This review summarizes the sex-based differences in physiological functions and draws attention to those which likely determine success in extreme exercise endeavors. The aim is to provide a balanced discussion of the female versus male predisposition to ultra-endurance sport. Herein, we discuss sex-based differences in muscle morphology and fatigability, respiratory-neuromechanical function, substrate utilization, oxygen utilization, gastrointestinal structure and function, and hormonal control. The literature indicates that while females exhibit numerous phenotypes that would be expected to confer an advantage in ultra-endurance competition (e.g., greater fatigue resistance, greater substrate efficiency, and lower energetic demands), they also exhibit several characteristics that unequivocally impinge on performance (e.g., lower O2-carrying capacity, increased prevalence of GI distress, and sex-hormone effects on cellular function/injury risk). Crucially, the advantageous traits may only manifest as ergogenic in the extreme endurance events which, paradoxically, are those that females less often contest. The title question should be revisited in the coming years, when/if the number of female participants increases.

Tiller NB, Turner LA, Hart J, Casaburi R. Airflow dynamics and exhaled-breath temperature following cold water ingestion. Respir Physiol Neurobiol, 2021. 284.

Introduction: Drinking cold water evokes decreases in spirometric indices of lung function. We studied whether this could be explained by changes in exhaled-breath temperature (EBT), airflow dynamics, and spirometer measurement sensitivity. Methods: In a randomized/crossover design, 10 healthy adults consumed 1000 mL refrigerated water (2.1 ± 0.64 °C) or water at room temperature (19.4 ± 0.5 °C), with EBT assessed at baseline and at 5, 10, 15 and 30-min post-ingestion. The influence of EBT on pneumotachograph measurement characteristics was modelled using computational fluid dynamics (CFD). Results: At 5-min post-ingestion, EBT was lower (p < 0.001) following the ingestion of cold water versus water at room-temperature (31.7 ± 1.1 vs. 33.0 ± 0.9 °C), and remained lower until 30-min post-ingestion. At a flow of 8 L s-1, a decrease in EBT of 2.1 °C (as observed following cold-water ingestion) was modelled to underpredict lung volume by 0.7%. Conclusions: Cold water reduces EBT below baseline but effects pneumotachograph measurements only negligibly. Therefore, decreased lung function following cold-water ingestion likely has a physiological explanation which warrants further study.

Callender NA, Hayes TN, Tiller NB. Cardiorespiratory demands of competitive rock climbing. Appl Physiol Nutr Metab, 2021. 46(2):161-168.

Rock climbing has become a mainstream sport, contested on the Olympic stage. The work/rest pattern of bouldering is unique among disciplines, and little is known about its physiological demands. This study characterised the cardiorespiratory responses to simulated competition. Eleven elite boulderers (7 male) volunteered to participate (age = 23.3 ± 4.5 years; mass = 68.2 ± 9.7 kg; stature = 1.73 ± 0.06 m; body fat = 10.4% ± 5%). Subjects completed incremental treadmill running to determine maximal capacities. On a separate day, they undertook a simulated Olympic-style climbing competition comprising 5 boulder problems, each separated by 5 min of rest. Pulmonary ventilation, gas exchange, and heart rate were assessed throughout. Total climbing time was 18.9 ± 2.7 min. Bouldering elicited a peak oxygen uptake of 35.8 ± 7.3 mL·kg-1·min-1 (∼75% of treadmill maximum) and a peak heart rate of 162 ± 14 beats·min-1 (∼88% of maximum). Subjects spent 22.9% ± 8.6% of climbing time above the gas exchange threshold. At exercise cessation, there was an abrupt and significant increase in tidal volume (1.4 ± 0.4 vs. 1.8 ± 0.4 L; p = 0.006, d = 0.83) despite unchanged minute ventilation. Cardiorespiratory parameters returned to baseline within 4 min of the rest period. In conclusion, competitive bouldering elicits substantial cardiorespiratory demand and evidence of tidal volume constraint. Further studies are warranted to explore the effect of cardiorespiratory training on climbing performance. Novelty: Competitive bouldering evokes a high fraction of maximal oxygen uptake and prolonged periods above the gas exchange threshold. Climbing appears to impose a constraint on tidal volume expansion. Cardiorespiratory indices in elite climbers return to baseline within 2-4 min.

Tiller NB, Stewart GM, Illidi CR, Levine BD. Exercise Is Medicine? The Cardiorespiratory Implications of Ultra-marathon. Curr Sports Med Rep, 2020. 19(8):290-297.

Regular physical activity decreases the risk of cardiovascular disease, type II diabetes, obesity, certain cancers, and all-cause mortality. Nevertheless, there is mounting evidence that extreme exercise behaviors may be detrimental to human health. This review collates several decades of literature on the physiology and pathophysiology of ultra-marathon running, with emphasis on the cardiorespiratory implications. Herein, we discuss the prevalence and clinical significance of postrace decreases in lung function and diffusing capacity, respiratory muscle fatigue, pulmonary edema, biomarkers of cardiac injury, left/right ventricular dysfunction, and chronic myocardial remodeling. The aim of this article is to inform risk stratification for ultra-marathon and to edify best practice for personnel overseeing the events (i.e., race directors and medics).

Callender NA, Hart PW, Ramchandani GM, Chaggar PS, Porter AJ, Billington CP, Tiller NB. The exercise pressor response to indoor rock climbing. J Appl Physiol, 2020. 129(2):404-409. 

This paper assessed the blood pressure, heart rate, and mouth-pressure responses to indoor rock climbing (bouldering) and associated training exercises. Six well-trained male rock climbers (mean ± SD age, 27.7 ± 4.7 yr; stature, 177.7 ± 7.3 cm; mass, 69.8 ± 12.1 kg) completed two boulder problems (6b and 7a+ on the Fontainebleau Scale) and three typical training exercises [maximum voluntary contraction (MVC) isometric pull-up, 80% MVC pull-ups to fatigue, and campus board to fatigue]. Blood pressure and heart rate were measured via an indwelling femoral arterial catheter, and mouth pressure via a mouthpiece manometer. Bouldering evoked a peak systolic pressure of 200 ± 17 mmHg (44 ± 21% increase from baseline), diastolic pressure of 142 ± 26 mmHg (70 ± 32% increase), mean arterial pressure of 163 ± 18 mmHg (56 ± 25% increase), and heart rate of 176 ± 22 beats/min (76 ± 35% increase). The highest systolic pressure was observed during the campus board exercise (218 ± 33 mmHg), although individual values as high as 273/189 mmHg were recorded. Peak mouth pressure during climbing was 31 ± 46 mmHg, and this increased independently of climb difficulty. We concluded that indoor rock climbing and associated exercises evoke a substantial pressor response resulting in high blood pressures that may exceed those observed during other upper-limb resistance exercises. These findings may inform risk stratification for climbers.

PUBLICATIONS

1024px-US-NLM-PubMed-Logo.svg.png
Screenshot 2021-08-16 215008.jpg
download.png

Tiller NB, Roberts JD, Beasley L, Chapman S, Pinto JM, Smith L, Wiffin M, Russell M, Sparks SA, Duckworth L, O'Hara J, Sutton L, Antonio J, Willoughby DS, Tarpey MD, Smith-Ryan AE, Ormsbee MJ, Astorino TA, Kreider RB, McGinnis GR, Stout JR, Smith JW, Arent SM, Campbell BI, Bannock L. International Society of Sports Nutrition Position Stand: nutritional considerations for single-stage ultra-marathon training and racing. J Int Soc Sports Nutr, 2019. 16(1):50.

Background In this Position Statement, the International Society of Sports Nutrition (ISSN) provides an objective and critical review of the literature pertinent to nutritional considerations for training and racing in single-stage ultra-marathon. Recommendations for Training. i) Ultra-marathon runners should aim to meet the caloric demands of training by following an individualized and periodized strategy, comprising a varied, food-first approach; ii) Athletes should plan and implement their nutrition strategy with sufficient time to permit adaptations that enhance fat oxidative capacity; iii) The evidence overwhelmingly supports the inclusion of a moderate-to-high carbohydrate diet (i.e., ~ 60% of energy intake, 5-8 g·kg- 1·d- 1) to mitigate the negative effects of chronic, training-induced glycogen depletion; iv) Limiting carbohydrate intake before selected low-intensity sessions, and/or moderating daily carbohydrate intake, may enhance mitochondrial function and fat oxidative capacity. Nevertheless, this approach may compromise performance during high-intensity efforts; v) Protein intakes of ~ 1.6 g·kg- 1·d- 1 are necessary to maintain lean mass and support recovery from training, but amounts up to 2.5 g.kg- 1·d- 1 may be warranted during demanding training when calorie requirements are greater; Recommendations for Racing. vi) To attenuate caloric deficits, runners should aim to consume 150-400 Kcal·h- 1 (carbohydrate, 30-50 g·h- 1; protein, 5-10 g·h- 1) from a variety of calorie-dense foods. Consideration must be given to food palatability, individual tolerance, and the increased preference for savory foods in longer races; vii) Fluid volumes of 450-750 mL·h- 1 (~ 150-250 mL every 20 min) are recommended during racing. To minimize the likelihood of hyponatraemia, electrolytes (mainly sodium) may be needed in concentrations greater than that provided by most commercial products (i.e., > 575 mg·L- 1 sodium). Fluid and electrolyte requirements will be elevated when running in hot and/or humid conditions; viii) Evidence supports progressive gut-training and/or low-FODMAP diets (fermentable oligosaccharide, disaccharide, monosaccharide and polyol) to alleviate symptoms of gastrointestinal distress during racing; ix) The evidence in support of ketogenic diets and/or ketone esters to improve ultra-marathon performance is lacking, with further research warranted; x) Evidence supports the strategic use of caffeine to sustain performance in the latter stages of racing, particularly when sleep deprivation may compromise athlete safety.

Tiller NB. Pulmonary and Respiratory Muscle Function in Response to Marathon and Ultra-Marathon Running: A Review. Sports Med, 2019. 49(7):1031-1041.

The physiological demands of marathon and ultra-marathon running are substantial, affecting multiple body systems. There have been several reviews on the physiological contraindications of participation; nevertheless, the respiratory implications have received relatively little attention. This paper provides an up-to-date review of the literature pertaining to acute pulmonary and respiratory muscle responses to marathon and ultra-marathon running. Pulmonary function was most commonly assessed using spirometry, with infrequent use of techniques including single-breath rebreathe and whole-body plethysmography. All studies observed statistically significant post-race reductions in one-or-more metrics of pulmonary function, with or without evidence of airway obstruction. Nevertheless, an independent analysis revealed that post-race values rarely fell below the lower-limit of normal and are unlikely, therefore, to be clinically significant. This highlights the virtue of healthy baseline parameters prior to competition and, although speculative, there may be more potent clinical manifestations in individuals with below-average baseline function, or those with pre-existing respiratory disorders (e.g., asthma). Respiratory muscle fatigue was most commonly assessed indirectly using maximal static mouth-pressure manoeuvres, and respiratory muscle endurance via maximum voluntary ventilation (MVV12). Objective nerve-stimulation data from one study, and others documenting the time-course of recovery, implicate peripheral neuromuscular factors as the mechanism underpinning such fatigue. Evidence of respiratory muscle fatigue was more prevalent following marathon compared to ultra-marathon, and might be a factor of work rate, and thus exercise ventilation, which is tempered during longer races. Potential implications of respiratory muscle fatigue on health and marathon/ultra-marathon performance have been discussed, and include a diminished postural stability that may increase the risk of injury when running on challenging terrain, and possible respiratory muscle fatigue-induced effects on locomotor limb blood flow. This review provides novel insights that might influence marathon/ultra-marathon preparation strategies, as well as inform medical best-practice of personnel supporting such events.

Tiller NB, Chiesa SC, Roberts JD, Turner LM, Jones S, Romer LM. Physiological and Pathophysiological Consequences of a 25-Day Ultra-Endurance Exercise Challenge. Front Physiol, 2019. 10:589.

Background: This case-report characterized the respiratory, cardiovascular, and nutritional/gastrointestinal (GI) responses of a trained individual to a novel ultra-endurance exercise challenge. Case Presentation: A male athlete (age 45 years; ˙VV˙ O2max 54.0 mL⋅kg-1⋅min-1) summited 100 mountains on foot in 25 consecutive days (all elevations >600 m). Measures: Laboratory measures of pulmonary function (spirometry, whole-body plethysmography, and single-breath rebreathe), respiratory muscle function (maximum static mouth-pressures), and cardiovascular structure and function (echocardiography, electrocardiography, large vessel ultrasound, and flow-mediated dilatation) were made at baseline and 48 h post-challenge. Dietary intake (four-day food diary), self-reported GI symptoms and plasma endotoxin concentrations were assessed at baseline, pre/post mid-point, pre/post end-point, and 48 h post-challenge. Results: The challenge was completed in a total exercise time of 142 h (5.3 ± 2.8 h⋅d-1), with a distance of 1141 km (42.3 ± 43.9 km⋅d-1), and energy expenditure of 80460 kcal (2980 ± 1451 kcal⋅d-1). Relative to baseline, there were post-challenge decreases in pulmonary capacities and expiratory flows (≤34%), maximum expiratory mouth-pressure (19%), and maximum voluntary ventilation (29%). Heart rate variability deteriorated, manifesting as a 48% decrease in the root mean square of successive differences and a 70% increase in the low-frequency/high-frequency ratio. Pre- to post-challenge endotoxin concentrations were elevated by 60%, with a maximum increase of 130% after a given stage, congruent with an increased frequency and severity of GI symptoms. Conclusion: The challenge resulted in pulmonary and autonomic dysfunction, endotoxaemia, and GI distress. The findings extend our understanding of the limits of physiological function and may inform medical best-practice for personnel supporting ultra-endurance events.

Tiller NB, Campbell IG, Romer LM. Mechanical-ventilatory responses to peak and ventilation-matched upper- versus lower-body exercise in normal subjects. Exp Physiol, 2019. 104(6):920-931.

The aim of this study was to determine the extent to which the mechanical ventilatory responses to upper-body exercise are influenced by task-specific locomotor mechanics. Eight healthy men (mean ± SD: age, 24 ± 5 years; mass, 74 ± 11 kg; and stature, 1.79 ± 0.07 m) completed two maximal exercise tests, on separate days, comprising 4 min stepwise increments of 15 W during upper-body exercise (arm-cranking) or 30 W during lower-body exercise (leg-cycling). The tests were repeated at work rates calculated to elicit 20, 40, 60, 80 and 100% of the peak ventilation achieved during arm-cranking (VE/UBE). Exercise measures included pulmonary ventilation and gas exchange, oesophageal pressure-derived indices of respiratory mechanics, operating lung volumes and expiratory flow limitation. Subjects exhibited normal resting pulmonary function. Arm-crank exercise elicited significantly lower peak values for work rate, O2 uptake, CO2 output, minute ventilation and tidal volume (p < 0.05). At matched ventilations, arm-crank exercise restricted tidal volume expansion relative to leg-cycling exercise at 60% VE/UBE (1.74 ± 0.61 versus 2.27 ± 0.68 l, p < 0.001), 80% VE/UBE (2.07 ± 0.70 versus 2.52 ± 0.67 l, p < 0.001) and 100% VE/UBEV (1.97 ± 0.85 versus 2.55 ± 0.72 l, p = 0.002). Despite minimal evidence of expiratory flow limitation, expiratory reserve volume was significantly higher during arm-cranking versus leg-cycling exercise at 100% VE/UBE (39 ± 8 versus 29 ± 8% of vital capacity, p = 0.002). At any given ventilation, arm-cranking elicited greater inspiratory effort (oesophageal pressure) relative to thoracic displacement (tidal volume). Arm-cranking exercise is sufficient to provoke respiratory mechanical derangements (restricted tidal volume expansion, dynamic hyperinflation and neuromechanical uncoupling) in subjects with normal pulmonary function and expiratory flow reserve. These responses are likely to be attributable to task-specific locomotor mechanics (i.e. non-respiratory loading of the thorax).

Tiller NB, Turner LA, Taylor BJ. Pulmonary and respiratory muscle function in response to 10 marathons in 10 days. Eur J Appl Physiol, 2019. 119(2):509-518.

Purpose: Marathon and ultramarathon provoke respiratory muscle fatigue and pulmonary dysfunction; nevertheless, it is unknown how the respiratory system responds to multiple, consecutive days of endurance exercise. Methods: Nine trained individuals (six male) contested 10 marathons in 10 consecutive days. Respiratory muscle strength (maximum static inspiratory and expiratory mouth-pressures), pulmonary function (spirometry), perceptual ratings of respiratory muscle soreness (Visual Analogue Scale), breathlessness (dyspnea, modified Borg CR10 scale), and symptoms of Upper Respiratory Tract Infection (URTI), were assessed before and after marathons on days 1, 4, 7, and 10. Results: Group mean time for 10 marathons was 276 ± 35 min. Relative to pre-challenge baseline (159 ± 32 cmH2O), MEP was reduced after day 1 (136 ± 31 cmH2O, p = 0.017), day 7 (138 ± 42 cmH2O, p = 0.035), and day 10 (130 ± 41 cmH2O, p = 0.008). There was no change in pre-marathon MEP across days 1, 4, 7, or 10 (p > 0.05). Pre-marathon forced vital capacity was significantly diminished at day 4 (4.74 ± 1.09 versus 4.56 ± 1.09 L, p = 0.035), remaining below baseline at day 7 (p = 0.045) and day 10 (p = 0.015). There were no changes in FEV1, FEV1/FVC, PEF, MIP, or respiratory perceptions during the course of the challenge (p > 0.05). In the 15-day post-challenge period, 5/9 (56%) runners reported symptoms of URTI, relative to 1/9 (11%) pre-challenge. Conclusions: Single-stage marathon provokes acute expiratory muscle fatigue which may have implications for health and/or performance, but 10 consecutive days of marathon running does not elicit cumulative (chronic) changes in respiratory function or perceptions of dyspnea. These data allude to the robustness of the healthy respiratory system.

Cherrington J, Black J, Tiller NB. Running away from the taskscape: ultramarathon as ‘dark ecology’. Annals of Leisure Research, 2020.  23(2).

Drawing on reflections from a collaborative autoethnography, this article argues that ultramarathon running is defined by a ‘dark’ ecological sensibility [Morton, Timothy. 2007. Ecology without Nature. London: Harvard University Press; Morton, Timothy. 2010. The Ecological Thought. London: Harvard University Press; Morton, Timothy. 2016. Dark Ecology: For a Logic of Future Coexistence. New York: Columbia University Press], characterized by moments of pain, disgust, and the macabre. In contrast to existing accounts, we problematize the notion that runners ‘use’ nature for escape and/or competition, while questioning the aesthetic-causal relationships often evinced within these accounts. With specific reference to the discursive, embodied, spatial and temporal aspects of the sport, we explore the way in which participants begin to appreciate the immense power of nature, while being humbled by the fragile and unstable foundations of human experience. Accordingly this article contributes novel insights into the human-nature complex that seek to move beyond Romantic analyses towards a more sophisticated understanding of the relationships between (nature) sport, people and place.

Tiller NB, Simpson AJ. Effect of spirometry on intra-thoracic pressures. BMC Res Notes, 2018. 11(1). 

Objective: Due to the high intra-thoracic pressures associated with forced vital capacity manoeuvres, spirometry is contraindicated for vulnerable patients. However, the typical pressure response to spirometry has not been reported. Eight healthy, recreationally-active men performed spirometry while oesophageal pressure was recorded using a latex balloon-tipped catheter. Results: Peak oesophageal pressure during inspiration was - 47 ± 9 cmH2O (37 ± 10% of maximal inspiratory pressure), while peak oesophageal pressure during forced expiration was 102 ± 34 cmH2O (75 ± 17% of maximal expiratory pressure). The deleterious consequences of spirometry might be associated with intra-thoracic pressures that approach maximal values during forced expiration.

Tiller NB, Aggar TA, West CR, Romer LM. Exercise-induced diaphragm fatigue in a Paralympic champion rower with spinal cord injury. J Appl Physiol, 2018. 124(3):805-811.

The aim of this case report was to determine whether maximal upper body exercise was sufficient to induce diaphragm fatigue in a Paralympic champion adaptive rower with low-lesion spinal cord injury (SCI). An elite arms-only oarsman (age: 28 yr; stature: 1.89 m; and mass: 90.4 kg) with motor-complete SCI (T12) performed a 1,000-m time trial on an adapted rowing ergometer. Exercise measurements comprised pulmonary ventilation and gas exchange, diaphragm EMG-derived indexes of neural respiratory drive, and intrathoracic pressure-derived indexes of respiratory mechanics. Diaphragm fatigue was assessed by measuring pre- to postexercise changes in the twitch transdiaphragmatic pressure (Pdi,tw) response to anterolateral magnetic stimulation of the phrenic nerves. The time trial (248 ± 25 W, 3.9 min) elicited a peak O2 uptake of 3.46 l/min and a peak pulmonary ventilation of 150 l/min (57% MVV). Breath-to-stroke ratio was 1:1 during the initial 400 m and 2:1 thereafter. The ratio of inspiratory transdiaphragmatic pressure to diaphragm EMG (neuromuscular efficiency) fell from rest to 600 m (16.0 vs. 3.0). Potentiated Pdi,tw was substantially reduced (-33%) at 15-20 min postexercise, with only partial recovery (-12%) at 30-35 min. This is the first report of exercise-induced diaphragm fatigue in SCI. The decrease in diaphragm neuromuscular efficiency during exercise suggests that the fatigue was partly due to factors independent of ventilation (e.g., posture and locomotion).

Ranchordas M, Tiller NB, Ramchandani G, Jutley R, Blow A, Tye J, Drury B. Normative data on regional sweat-sodium concentrations of professional male team-sport athletes. J Int Soc Sports Nutr, 2017. 14:40.

Background: The purpose of this paper was to report normative data on regional sweat sweat-sodium concentrations of various professional male team-sport athletes, and to compare sweat-sodium concentrations among sports. Data to this effect would inform our understanding of athlete sodium requirements, thus allowing for the individualisation of sodium replacement strategies. Accordingly, data from 696 athletes (Soccer, n = 270; Rugby, n = 181; Baseball, n = 133; American Football, n = 60; Basketball, n = 52) were compiled for a retrospective analysis. Regional sweat-sodium concentrations were collected using the pilocarpine iontophoresis method, and compared to self-reported measures collected via questionnaire. Results: Sweat-sodium concentrations were significantly higher (p < 0.05) in American football (50.4 ± 15.3 mmol·L-1), baseball (54.0 ± 14.0 mmol·L-1), and basketball (48.3 ± 14.0 mmol·L-1) than either soccer (43.2 ± 12.0 mmol·L-1) or rugby (44.0 ± 12.1 mmol·L-1), but with no differences among the N.American or British sports. There were strong positive correlations between sweat-sodium concentrations and self-reported sodium losses in American football (rs = 0.962, p < 0.001), basketball (rs = 0.953, p < 0.001), rugby (rs = 0.813, p < 0.001), and soccer (rs = 0.748, p < 0.001). Conclusions: The normative data provided on sweat-sodium concentrations might assist sports science/medicine practitioners in generating bespoke hydration and electrolyte-replacement strategies to meet the sodium demands of professional team-sport athletes. Moreover, these novel data suggest that self-reported measures of sodium loss might serve as an effective surrogate in the absence of direct measures; i.e., those which are more expensive or non-readily available.

Tiller NB, Campbell IG, Romer LM. Influence of Upper-Body Exercise on the Fatigability of Human Respiratory Muscles. Med Sci Sports Exerc, 2017. 49(7):1461-1472.

Purpose: Diaphragm and abdominal muscles are susceptible to contractile fatigue in response to high-intensity, whole-body exercise. This study assessed whether the ventilatory and mechanical loads imposed by high-intensity, upper-body exercise would be sufficient to elicit respiratory muscle fatigue. Methods: Seven healthy men (mean ± SD; age = 24 ± 4 yr, peak O2 uptake [V˙O2peak] = 31.9 ± 5.3 mL·kg·min) performed asynchronous arm-crank exercise to exhaustion at work rates equivalent to 30% (heavy) and 60% (severe) of the difference between gas exchange threshold and V˙O2peak. Contractile fatigue of the diaphragm and abdominal muscles was assessed by measuring pre- to postexercise changes in potentiated transdiaphragmatic and gastric twitch pressures (Pdi,tw and Pga,tw) evoked by supramaximal magnetic stimulation of the cervical and thoracic nerves, respectively. Results: Exercise time was 24.5 ± 5.8 min for heavy exercise and 9.8 ± 1.8 min for severe exercise. Ventilation over the final minute of heavy exercise was 73 ± 20 L·min (39% ± 11% maximum voluntary ventilation) and 99 ± 19 L·min (53% ± 11% maximum voluntary ventilation) for severe exercise. Mean Pdi,tw did not differ pre- to postexercise at either intensity (P > 0.05). Immediately (5-15 min) after severe exercise, mean Pga,tw was significantly lower than pre-exercise values (41 ± 13 vs 53 ± 15 cm H2O, P < 0.05), with the difference no longer significant after 25-35 min. Abdominal muscle fatigue (defined as ≥15% reduction in Pga,tw) occurred in 1/7 subjects after heavy exercise and 5/7 subjects after severe exercise. Conclusions: High-intensity, upper-body exercise elicits significant abdominal, but not diaphragm, muscle fatigue in healthy men. The increased magnitude and prevalence of fatigue during severe-intensity exercise is likely due to additional (nonrespiratory) loading of the thorax.

Jones L, Tiller NB, Karageorghis C. Psychophysiological effects of music on acute recovery from high-intensity interval training. Physiol Behav, 2017. 170:106-114.

Numerous studies have examined the multifarious effects of music applied during exercise but few have assessed the efficacy of music as an aid to recovery. Music might facilitate physiological recovery via the entrainment of respiratory rhythms with music tempo. High-intensity exercise training is not typically associated with positive affective responses, and thus ways of assuaging negative affect warrant further exploration. This study assessed the psychophysiological effects of music on acute recovery and prevalence of entrainment in between bouts of high-intensity exercise. Thirteen male runners (Mage=20.2±1.9years; BMI=21.7±1.7; V̇O2 max=61.6±6.1mL·kg·min-1) completed three exercise sessions comprising 5×5-min bouts of high-intensity intervals interspersed with 3-min periods of passive recovery. During recovery, participants were administered positively-valenced music of a slow-tempo (55-65bpm), fast-tempo (125-135bpm), or a no-music control. A range of measures including affective responses, RPE, cardiorespiratory indices (gas exchange and pulmonary ventilation), and music tempo-respiratory entrainment were recorded during exercise and recovery. Fast-tempo, positively-valenced music resulted in higher Feeling Scale scores throughout recovery periods (p<0.01, ηp2=0.38). There were significant differences in HR during initial recovery periods (p<0.05, ηp2=0.16), but no other music-moderated differences in cardiorespiratory responses. In conclusion, fast-tempo, positively-valenced music applied during recovery periods engenders a more pleasant experience. However, there is limited evidence that music expedites cardiorespiratory recovery in between bouts of high-intensity exercise. These findings have implications for athletic training strategies and individuals seeking to make high-intensity exercise sessions more pleasant.

Tiller NB, Price MJ., Campbell IG, Romer LM. Effect of cadence on locomotor-respiratory coupling during upper-body exercise. Eur J Appl Physiol, 2017. 117(2):279-287.

Introduction: Asynchronous arm-cranking performed at high cadences elicits greater cardiorespiratory responses compared to low cadences. This has been attributed to increased postural demand and locomotor-respiratory coupling (LRC), and yet, this has not been empirically tested. This study aimed to assess the effects of cadence on cardiorespiratory responses and LRC during upper-body exercise. Methods: Eight recreationally-active men performed arm-cranking exercise at moderate and severe intensities that were separated by 10 min of rest. At each intensity, participants exercised for 4 min at each of three cadences (50, 70, and 90 rev min-1) in a random order, with 4 min rest-periods applied in-between cadences. Exercise measures included LRC via whole- and half-integer ratios, cardiorespiratory function, perceptions of effort (RPE and dyspnoea), and diaphragm EMG using an oesophageal catheter. Results: The prevalence of LRC during moderate exercise was highest at 70 vs. 50 rev min-1 (27 ± 10 vs. 13 ± 9%, p = 0.000) and during severe exercise at 90 vs. 50 rev min-1 (24 ± 7 vs. 18 ± 5%, p = 0.034), with a shorter inspiratory time and higher mean inspiratory flow (p < 0.05) at higher cadences. During moderate exercise, [Formula: see text] and f C were higher at 90 rev min-1 (p < 0.05) relative to 70 and 50 rev min-1 ([Formula: see text] 1.19 ± 0.25 vs. 1.05 ± 0.21 vs. 0.97 ± 0.24 L min-1; f C 116 ± 11 vs. 101 ± 13 vs. 101 ± 12 b min-1), with concomitantly elevated dyspnoea. There were no discernible cadence-mediated effects on diaphragm EMG. Conclusion: Participants engage in LRC to a greater extent at moderate-high cadences which, in turn, increase respiratory airflow. Cadence rate should be carefully considered when designing aerobic training programmes involving the upper-limbs.