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Abstract
The literature on high-intensity interval training (HIIT) contains claims that, if true, could revolutionize the science and 
practice of exercise. This critical analysis examines two varieties of claims: (i) HIIT is effective in improving various indices 
of fitness and health, and (ii) HIIT is as effective as more time-consuming moderate-intensity continuous exercise. Using 
data from two recent systematic reviews as working examples, we show that studies in both categories exhibit considerable 
weaknesses when judged through the prism of fundamental statistical principles. Predominantly, small-to-medium effects 
are investigated in severely underpowered studies, thus greatly increasing the risk of both type I and type II errors of statisti-
cal inference. Studies in the first category combine the volatility of estimates associated with small samples with numerous 
dependent variables analyzed without consideration of the inflation of the type I error rate. Studies in the second category 
inappropriately use the p > 0.05 criterion from small studies to support claims of ‘similar’ or ‘comparable’ effects. It is 
concluded that the situation in the HIIT literature is reminiscent of the research climate that led to the replication crisis in 
psychology. As in psychology, this could be an opportunity to reform statistical practices in exercise science.

1  Introduction

In the mid-1990s, exercise science underwent what can be 
characterized as the most consequential paradigmatic shift 
in its history, expanding its focus from exercise training for 
fitness enhancement to lifestyle physical activity for the pro-
motion of public health [1, 2]. This new perspective resulted 
in a series of physical activity recommendations from organ-
izations in the United States, including the Centers for Dis-
ease Control and Prevention [3], the Surgeon General [4], 
and the National Institutes of Health [5, 6], followed by simi-
lar initiatives in other countries. These recommendations 
converged on a common, easy-to-remember message: adults 
should accumulate (in short bouts, dispersed throughout the 

day) at least 30 min of physical activity, performed at least 
at a moderate intensity, on most, but preferably all, days of 
the week.

At the time, several aspects of these recommendations 
were criticized for their lack of specificity (e.g., what is 
‘moderate’ intensity?) or for relying on a weak empirical 
basis (e.g., scant evidence on ‘accumulated’ physical activ-
ity). Furthermore, while the recommendations implied that 
additional health benefits could be obtained with activities 
of higher-than-moderate intensity, the emphasis was clearly 
placed on activity options that involve moderate intensity, 
such as brisk walking, based on the assumption that such 
options are realistic and non-intimidating for a largely hypo-
active adult population [7]. This rationale was supported 
by a meta-analysis showing that interventions attempting to 
implement activity of higher intensity were associated with 
lower participation [8].

Despite good intentions, the guidelines had no measur-
able effect on public participation in physical activity. Accel-
erometry data from the 2003–2004 National Health and 
Nutritional Examination Survey (NHANES), a nationally 
representative study in the United States (with 6329 indi-
viduals providing at least one day of data), showed that only 
3.5% of individuals 20–59 years of age and 2.4% of those 
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aged 60 years or older registered at least 30 min of mod-
erate-intensity physical activity per day on at least 5 days 
per week [9]. Less than 1% of adults registered 20 min of 
vigorous-intensity activity on at least 3 days per week [10]. 
In the 2005–2006 NHANES, the situation was unchanged, 
with only 3.2% of adults achieving the recommended dose 
of moderate-intensity activity [11]. The absence of posi-
tive results from population surveys encouraged calls for 
renewed emphasis on higher intensity activity [12–14]. 
Indeed, reformulated physical activity guidelines explicitly 
offered a choice between moderate intensity (for at least 
30 min on 5 days per week, or 150 min per week), vigor-
ous intensity (for at least 20–25 min on 3 days per week, or 
75 min per week), or an equivalent combination [15, 16].

In 2005, in the midst of the debate preceding the refor-
mulation of the guidelines and the renewed emphasis on 
vigorous-intensity activities, researchers published results 
from a doctoral dissertation [17] in the Journal of Applied 
Physiology. The article reported a remarkable finding, 
namely that a group of two women and six men doubled 
their cycling endurance performance (time to fatigue while 
pedaling at 80% V̇O2peak ) after a total of only about 15 min 
of high-intensity interval training (HIIT) over 2 weeks, with-
out changing their maximal aerobic capacity. An accom-
panying editorial [18] underscored the “effectiveness and 
remarkable time efficiency” of high-intensity training but 
noted that the ‘price’ participants have to pay is a need for 
“a high level of motivation” and “a feeling of severe fatigue 
lasting for at least 10–20 min” (p. 1983) [18]. Over the next 
several years, fueled by extensive media coverage in which 
HIIT was portrayed as a solution for individuals with limited 
available discretionary time, HIIT became a top trend in the 
fitness industry worldwide [19]. Moreover, since 2005, HIIT 
has been the subject of approximately 4000 articles, with 
more than 700 new articles being added to the literature each 
year, 10% of them being meta-analyses (see Fig. 1).

The data on the fitness and health benefits of HIIT have 
been characterized as “clear and convincing” (p. 1231) [20]. 
Nevertheless, as claims about HIIT are now influencing 
policy on a national and global scale (e.g., through exercise 
prescription guidelines and physical activity recommenda-
tions), it would be prudent to assess whether these claims 
can withstand statistical scrutiny. Steen [21] has argued that 
“error and fraud are the main sources of scientific misinfor-
mation” but “error is more prevalent than fraud” (p. 501). He 
insisted that “bias can also result from earnest error, statisti-
cal naiveté, or other innocent causes; not all bias is fraud” (p. 
502). However, it has already been established that some of 
the extraordinary claims surrounding HIIT cannot be attrib-
uted solely to earnest human error. For example, on 14 Feb-
ruary 2019, the British Journal of Sports Medicine issued a 
press release promoting the publication of a meta-analysis 
entitled “Is interval training the magic bullet for fat loss?” 

[22], which purportedly showed that, indeed, HIIT results 
in significantly larger reduction in total absolute fat mass 
than moderate-intensity continuous exercise (− 2.28 kg, 95% 
CI − 4.00 to − 0.56, p = 0.0094). The press release issued 
by the journal appeared under the title “Interval training 
may shed more pounds than continuous moderate intensity 
workout,” and attracted the attention of major news outlets, 
including the global news agency Reuters and influential 
magazines like Runner’s World.1 However, the meta-analysis 
was later retracted because the authors could not explain 
how they obtained their data (e.g., a larger reduction of body 
fat by − 13.44 kg in HIIT than moderate-intensity continuous 
exercise, associated with a 12-week study that reported no 
relevant data).

Drawing lists of studies from two recently published 
systematic reviews, the present critical analysis focuses on 
statistical concerns emanating from the rapidly expanding 
literature on HIIT. This analysis highlights alarming par-
allels between prevalent practices in the HIIT literature 
and the emergence of a replication crisis in other scientific 
fields. The narrative culminates in a call for a return to fun-
damental principles of statistics. Unlike some of the more 
complicated scenarios outlined by Sainani et al. [23], the 
points raised in the following sections refer to elementary 

Fig. 1   The number of entries per year in PubMed that include the 
strings ‘high intensity interval’ or ‘sprint interval’ are shown in the 
line chart. The number of meta-analyses (subsample) is shown in bars

1  See: (1) https://​bjsm.​bmj.​com/​conte​nt/​bjspo​rts/​suppl/​2019/​02/​19/​
bjspo​rts-​2018-​099928.​DC1/​bjspo​rts-​2018-​099928.​pdf; (2) https://​
www.​reute​rs.​com/​artic​le/​us-​health-​exerc​ise-​train​ing/​inter​val-​train​ing-​
burns-​off-​more-​pounds-​than-​joggi​ng-​or-​cycli​ng-​idUSK​CN1Q7​1TT; 
(3) https://​www.​runne​rswor​ld.​com/​news/​a2633​9798/​inter​val-​train​ing-​
for-​weight-​loss-​study/

https://bjsm.bmj.com/content/bjsports/suppl/2019/02/19/bjsports-2018-099928.DC1/bjsports-2018-099928.pdf
https://bjsm.bmj.com/content/bjsports/suppl/2019/02/19/bjsports-2018-099928.DC1/bjsports-2018-099928.pdf
https://www.reuters.com/article/us-health-exercise-training/interval-training-burns-off-more-pounds-than-jogging-or-cycling-idUSKCN1Q71TT
https://www.reuters.com/article/us-health-exercise-training/interval-training-burns-off-more-pounds-than-jogging-or-cycling-idUSKCN1Q71TT
https://www.reuters.com/article/us-health-exercise-training/interval-training-burns-off-more-pounds-than-jogging-or-cycling-idUSKCN1Q71TT
https://www.runnersworld.com/news/a26339798/interval-training-for-weight-loss-study/
https://www.runnersworld.com/news/a26339798/interval-training-for-weight-loss-study/
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statistical principles, such as the mechanisms that raise the 
risk of type I and type II errors of statistical inference. The 
analysis culminates in a call not for the implementation of 
novel, obscure, or advanced statistical methods but rather for 
a return to fundamental statistical principles, along with the 
readoption of the critical outlook that should, in principle, 
characterize all manner of scientific inquiry.

2 � Statistical Preliminaries: (Mis‑) 
Understanding Null‑Hypothesis 
Significance Testing

Studies evaluating the effectiveness of HIIT reach their 
conclusions following the statistical methodology known 
as null-hypothesis significance testing (NHST). Despite 
strong concerns [24, 25] and the presence of alternatives 
(i.e., Bayesian inference and fiducial inference) [26], NHST 
has been established as the standard method for evaluating 
statistical tests in most domains of human-science research, 
including the exercise sciences. Despite its popularity, how-
ever, the NHST is frequently misunderstood, misapplied, 
and misinterpreted [24, 25, 27].

NHST represents the amalgamation of the testing meth-
odologies proposed during the period 1915–1933 by Ron-
ald Aylmer Fisher (1890–1962) and the duo of Jerzy Ney-
man (1894–1981) and Egon Sharpe Pearson (1895–1980). 
Fisher on the one hand, and Neyman and Pearson on the 
other, contributed different pieces of what evolved into the 
NHST methodology, but it is important to emphasize that, 
as applied today, the NHST is “essentially an anonymous 
hybrid” and “a marriage of convenience that neither party 
would have condoned” (p. 171) [28].

Fisher, who emphasized the importance of inductive rea-
soning (i.e., analyzing samples to draw inferences about the 
population), is credited with the concept of the null hypoth-
esis (i.e., data demonstrating random variance) and the use 
of exact p values as a quantitative measure of the ‘extreme-
ness’ of the data given the null hypothesis. By extension, 
he considered p values as an indication of the plausibility 
or implausibility of the null hypothesis. However, although 
he famously wrote that “we shall not often be astray if we 
draw a conventional line at 0.05” (p. 82) [29], for Fisher, a 
low p value, such as p < 0.05, represented merely a sign that 
a finding may be worthy of further study, starting with an 
attempt at replication.

In the central point of contention with Fisher, Neyman 
and Pearson espoused a deductive approach, in which the 
null hypothesis is either rejected in favor of an alternative or 
retained for further study (which is not the same as accepting 
that the null hypothesis is true). Unlike Fisher, who believed 
that a specific hypothesis can be tested using data from a 
single study, Neyman and Pearson were not interested in 

developing a method for drawing inductive inferences about 
a single hypothesis based on the ‘statistical significance’ 
of data from a single study. Instead, their goal was to use a 
deductive approach and probability theory to develop ‘rules 
of behavior’ (i.e., rejection vs non-rejection of a hypothesis) 
to ensure that the frequency of errors (i.e., the erroneous 
rejection or non-rejection) would be kept below an accept-
ably low limit over a series of many studies:

But we may look at the purpose of tests from another 
view-point. Without hoping to know whether each 
separate hypothesis is true or false, we may search 
for rules to govern our behaviour with regard to them, 
in following which we insure that, in the long run of 
experience, we shall not be too often wrong. Here, 
for example, would be such a “rule of behaviour”: 
to decide whether a hypothesis, H, of a given type be 
rejected or not, calculate a specified character, x, of 
the observed facts; if x > x0 reject H, if x ≤ x0 accept 
H. Such a rule tells us nothing as to whether in a par-
ticular case H is true when x ≤ x0 or false when x > x0. 
But it may often be proved that if we behave according 
to such a rule, then in the long run we shall reject H 
when it is true not more, say, than once in a hundred 
times, and in addition we may have evidence that we 
shall reject H sufficiently often when it is false (p. 291) 
[30].

The Neyman-Pearson approach, therefore, implied two 
types of errors, called type I and type II, with the rate of 
those errors symbolized by the Greek letters α and β, respec-
tively, as well as the concept of statistical power, symbolized 
as 1-β [31]. A type I error (α) occurs when “if we reject H0, 
we may reject it when it is true,” whereas a type II error (β) 
occurs when “if we accept H0, we may be accepting it when 
it is false, that is to say, when really some alternative is true” 
(p. 296) [30]. Statistical power (1-β) is defined as “the prob-
ability of rejecting the hypothesis tested, H0, when the true 
hypothesis is Hi” (p. 498) [32].

Fisher [33] concurred with the notion of type I errors and 
was keenly aware of the risk of raising the rate of such errors 
as a result of performing a multitude of tests. For example, he 
argued that a comparison between two extreme values “picked 
out from the results, will often appear to be significant, even 
from undifferentiated material” (p. 66). His proposed remedy 
was analogous to alpha-splitting, namely making the criterion 
for evaluating the p value more stringent: “We might, there-
fore, require the probability of the observed difference to be as 
small as 1 in 900, instead of 1 in 20, before attaching statistical 
significance to the contrast” (p. 66). On the other hand, argu-
ing from an inductive standpoint, Fisher rejected the notion of 
type II errors because he believed that scientific research is a 
process of “learning by experience” and, in such a process, a 
priori knowledge is “almost always absent or negligible” (p. 
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73) [34]. Thus, although he considered the rate of type I error 
“calculable, and therefore controllable,” he insisted that type 
II error is “incalculable both in frequency and in magnitude” 
(p. 73).

Interestingly, while Fisher rejected the notion of type II 
error, he was aware of the importance of statistical power 
(although he used the term ‘sensitivity’ or ‘sensitiveness’) 
and the role of sample size and a higher number of repeti-
tions in increasing statistical power: “By increasing the size 
of the experiment, we can render it more sensitive, meaning 
by this that it will allow of the detection of a lower degree of 
sensory discrimination, or, in other words, of a quantitatively 
smaller departure from the null hypothesis” (p. 25) [33]. Com-
mentators have noted that “Fisher’s ‘sensitivity’ and Neyman-
Pearson’s ‘power’ refer to the same concept” (p. 173) [28], but 
Fisher “denied the possibility of assessing it quantitatively” 
(p. 1245) [35].

The main misinterpretations surrounding the NHST 
emerged following the merger of the Fisher and Neyman-Pear-
son approaches by anonymous researchers [35, 36], a merger 
“that neither party would have condoned,” to repeat the phrase 
of Hubbard and Bayarri (p. 171) [28]. This anonymous and 
unsanctioned merger has resulted in several persistent misuses 
and misinterpretations that have plagued research for decades 
[24, 37, 38]. Of these, the following problems are arguably 
most relevant to research on HIIT.

2.1 � The p Value as an Indication of the Plausibility 
of the Null Hypothesis

First, there is a widespread but mistaken belief that a p value 
of 0.05 means that there is only 5% probability of the null 
hypothesis being true (or, conversely, for 1-p, that there is 
95% probability that the null hypothesis is false). This belief 
is mistaken because p values are calculated from the data 
under the assumption that the null hypothesis is true [39]. A 
p value merely indicates the probability (assuming that the 
null hypothesis is true) of observing a test statistic (e.g., a t 
value) as extreme or more extreme than the value observed 
in the present sample. This can be expressed as Pr(data|H0) 
in probability notation. This statement is not equivalent to 
the interpretation that a p value of 0.05 means that there is 
only 5% probability of the null hypothesis being true, namely 
Pr(H0|data). While the p value does provide some indication 
of the plausibility or implausibility of the null hypothesis, a 
p near 0.05 "greatly overstates the evidence against the null 
hypothesis" (p. 139) [37]. Berger and Sellke [40] calculated 
that the lower bound of Pr(H0|data) can be estimated as:

Pr(H0|data) =
(
1 + (1 + n)−1∕2exp

{
t2∕

[
2(1 + 1∕n)

]})−1

Using a t value that yields p = 0.05 (t = 1.96) and a sam-
ple size of n = 50 per group results in Pr(H0|data) = 0.52, 
which surpasses p = 0.05 by more than an order of mag-
nitude [40, 41].

2.2 � The p Value as an Index of the Risk of Type I 
Errors

Second, related to the previous point, there is pervasive 
confusion between a p value, namely the probability of 
obtaining a test statistic at least as extreme as that obtained 
from a given study under the assumption that the null 
hypothesis is true, and α, namely the rate of type I errors 
[28]. In actuality, a single number (i.e., a p value) cannot 
simultaneously serve the dual function of providing an 
indication of the ‘extremeness’ of the data from any given 
study and, at the same time, an indication of the ‘long-
run’ frequency of improperly rejecting the null hypothesis 
when it is true [39]. Nevertheless, statisticians [40–42] 
have estimated that, at least for the range p < 1/e, where 
e is Euler's constant (2.71828), namely p < 0.36787, the 
lower bound of α (i.e., the minimum risk of a type I error 
when rejecting the null hypothesis) can be estimated by:

where log(p) is the natural logarithm of the p value. Sub-
stituting p = 0.05 yields α = 0.289. This means that there is 
at least 28.9% probability of a type I error when rejecting 
the null hypothesis on the basis of a p value close to 0.05. 
In other words, at least 28.9% of p values near 0.05 can be 
expected to come from studies in which the null hypothesis 
is true.

2.3 � The p Value as an Index of Replicability

Third, researchers often mistakenly assume that a low p 
value (e.g., p < 0.05) entails that, if the same test were 
performed on a different sample randomly drawn from 
the same population (e.g., same sample sizes, same treat-
ments), there would be high probability (e.g., > 95%) that 
the new p value would be similarly low (e.g., p < 0.05) 
[43]. In fact, except in studies with levels of statistical 
power over 90%, p values are characterized by extraordi-
nary uncertainty [44, 45]. Thus, for a comparison between 
two means resulting in p < 0.05, the probability of finding 
p < 0.05 in a (theoretical) ‘identical’ replication (with the 
difference between the means being in the same direction) 
has been estimated as only 50% [46–49].

�(p) =
(
1 +

[
−e p log(p)

]−1)−1
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2.4 � A Non‑Significant p Value As a Basis 
for Accepting the Null Hypothesis

Fourth, a widely prevalent and persistent misunderstanding 
is that obtaining a nonsignificant test result (e.g., p > 0.05) 
can be interpreted as an indication that the null hypothesis 
(e.g., μ1 − μ2 = 0) is true or as indication of the absence of 
an effect [24, 37, 38, 50–52]. Fisher [33] famously asserted 
that “the null hypothesis is never proved or established, but 
is possibly disproved, in the course of experimentation” (p. 
19). Accordingly, one of the oft-quoted admonitions of stat-
isticians is that “the absence of evidence is not the same as 
evidence of absence” [53, 54]. A non-significant p value 
cannot provide a basis for accepting the null hypothesis as 
true or for the rejection of alternatives. It only suggests that 
a null effect is statistically consistent (or not inconsistent) 
with the data, along with the range of other effects encom-
passed within the confidence interval. However, p > 0.05 
provides no indication that the null effect, specifically, is the 
most likely among these. Moreover, using non-significant p 
values as an indication in support of the null hypothesis is 
especially precarious in scientific fields, such as the exer-
cise sciences [55], that are characterized by a preponderance 
of underpowered studies. Authors have warned that “null 
results are surprisingly easy to obtain by mere statistical 
artefacts; simply using a small sample or a noisy measure 
can suffice to produce a false negative” (p. 97) [56].

Collectively, the aforementioned misinterpretations sug-
gest that NHST is a potentially useful, but delicate, test 
methodology. As such, it should be approached cautiously, 
recognizing and respecting its considerable limitations. The 
wide prevalence of the misinterpretations and misuses of the 
NHST across many domains of scientific research cannot be 
deemed a valid excuse for their ubiquity within the field of 
exercise science in general and research on HIIT in particu-
lar. Likewise, the fact that prestigious journals within the 
field of exercise science have permitted such practices does 
not render them any less egregious or harmful.

While there is ongoing debate about the causes and poten-
tial remedies of these misinterpretations and misuses of the 
NHST [57], many statistical experts see these misinterpre-
tations and misuses as contributors to the phenomenon of 
non-replicable research [58–61]. Whether implemented 
deliberately or inadvertently, questionable statistical prac-
tices can result in intriguing, albeit fanciful, findings, with a 
high probability of attracting the attention of other research-
ers and the public. Serra-Garcia and Gneezy [62] speculated 
that, when evaluating manuscripts, journal editors and peer 
reviewers probably weigh two considerations against each 
other, namely the likely robustness or reliability of the result 
on one hand and its interest or curiosity on the other: “when 
the paper is more interesting, the review team may apply 
lower standards regarding its reproducibility” (p. 4).

3 � Misuses of Null‑Hypothesis Significance 
Testing in Research on HIIT

The following two sections present critical commentar-
ies on two major variants of claims pertaining to HIIT, 
namely (i) that HIIT is effective in improving a variety of 
fitness and health outcomes, and (ii) that HIIT is as effec-
tive as more time-consuming moderate-intensity continu-
ous exercise. We examine studies contained in two recent 
systematic reviews to demonstrate that deviating from 
elementary statistical principles can result in data that 
can be portrayed as supporting both of these conclusions, 
but with a high probability that such conclusions reflect 
errors of statistical inference. It is important to reiterate 
that the problems to be discussed are certainly not unique 
to the HIIT literature but have long plagued the broader 
exercise-science literature [63].

3.1 � The ‘Is Effective’ Problem

As evidenced in meta-analyses [64, 65], a striking feature of 
the research literature on HIIT is an abundance of implau-
sibly large effect sizes (e.g., standardized mean differences 
over 2.0 or 2.5 standard deviations) reportedly demonstrat-
ing the extraordinary effectiveness of HIIT compared with 
control conditions or even compared with active interven-
tions consisting of moderate-intensity continuous exercise 
training. Some of these can be dismissed as mistakes, such 
as standardized mean differences (Hedges’ g) of 11, 16, or 
29 standard deviations [64], which can be readily attributed 
to computational errors (e.g., mistaking standard errors of 
the mean as standard deviations). Other cases, however, may 
be more complicated. For example, a remarkable standard-
ized mean difference in maximal oxygen consumption of 
4.59 standard deviations [65] from a 12-week comparison 
between HIIT and moderate-intensity continuous exercise 
[66] could be due to a host of well-established but frequently 
overlooked sources of methodological bias. These include, 
but are not limited to, the inadequate concealment of the ran-
domization sequence, the absence of intention-to-treat analy-
ses, and the use of unblinded outcome assessors. In addition, 
exercise researchers are aware of the biasing effect of sev-
eral exercise-specific factors, such as the lack of control for 
verbal encouragement during tests of maximal performance 
[67–69]. When exercise testing is conducted by research-
ers who are ardent proponents of HIIT (e.g., “HIIT should 
play a central role in health activity guidelines” because it 
can “maximize the benefits of physical activity globally,” p. 
5216) [70], and are unblinded to treatment allocation, find-
ing a standardized mean difference of 4.59 standard devia-
tions in favor of HIIT becomes a plausible occurrence.
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Such methodological sources of bias are beyond the 
scope of the present analysis. Here, we focus on statistical 
mechanisms that can produce similarly extraordinary (and 
likely non-replicable) results. For example, meta-analy-
ses have reported that HIIT interventions have produced 
standardized mean differences that exceeded 2.5 standard 
deviations [71, 72]. Closer inspection of the characteris-
tics of the studies that produced these large effect sizes 
[73–75] reveals certain notable commonalities: (i) small 
sample sizes (e.g., 10–20 participants per group), resulting 
in wide confidence intervals and low statistical power to 
detect even large effects, (ii) long lists of dependent vari-
ables, covering several multidimensional domains (e.g., 
anthropometric characteristics, inflammatory or immune 
markers, indices of cardiac, vascular, cardiorespiratory, or 
metabolic function), (iii) absence of pre-registration that 
could have allayed concerns about selective reporting, (iv) 
absence of designation of dependent variables as primary 
versus secondary, and (v) numerous statistical tests, each 
evaluated with the criterion of p < 0.05. Because of sam-
pling variability and the lack of precision associated with 
small samples, estimates of population values (means, 
standard deviations) and, therefore, the associated p values 
“dance around” (p. 1720), as Gandevia [76] put it. Given a 
long enough list of dependent variables, it becomes almost 
inevitable that some means will happen to show exagger-
ated differences, thus resulting in extraordinarily large 
effect sizes. With a lax criterion such as p < 0.05, one or 
more comparisons will cross the threshold of ‘statistical 
significance,’ increasing the likelihood of publication. A 
cynic might argue that this approach could be used, delib-
erately or unwittingly, as a recipe for producing seemingly 
‘significant’ and possibly novel or intriguing results, albeit 
results that are probably non-reproducible.

These basic statistical mechanics are explained in under-
graduate and postgraduate university courses on research 
methodology. It is, therefore, surprising and disheartening 
that studies with the aforementioned characteristics, and 
attendant risk of producing untenable results, continue to be 
commonplace in large sections of exercise-science research 
[77], including research on HIIT.

Nosek et al. [57] criticized the “disciplinary incentives” 
that tend to “inflate the rate of false effects in published sci-
ence” and “favor novelty over replication” (p. 615). In the 
following sections, we elaborate on several aspects of this 
problem.

3.1.1 � Multiplicity

Methodologically strong studies, including most well-
designed randomized controlled trials, have one outcome 
variable designated as ‘primary’ and, accordingly, test one 
main hypothesis, typically using the criterion of p < 0.05. 

Moreover, methodologically strong studies are pre-regis-
tered, which eliminates concerns about outcome switching 
(i.e., replacing the primary outcome of interest if it did not 
reach statistical significance with a different one that did) or 
selective reporting (i.e., only reporting the outcome that hap-
pened to reach the threshold of statistical significance out of 
a larger set of tested outcomes). However, in several domains 
of research, including studies investigating the effects of 
HIIT, pre-registration remains rare, and researchers report 
results pertaining to numerous dependent variables, each 
tested using the criterion of p < 0.05. This scenario is prob-
lematic insofar as it can raise the risk of type I errors (or 
‘false positives’), namely rejecting the null hypothesis when 
it is true.

Besides pre-registration, it is important for the tested 
hypotheses to be precise (e.g., “it is hypothesized that HIIT 
will improve outcome X as measured by test Y because of 
reason Z”). Instead, in the HIIT literature, studies often 
claim to have demonstrated the ‘effectiveness’ of HIIT rela-
tive to control treatments or relative to moderate-intensity 
continuous exercise (despite a smaller time commitment) 
by testing imprecise hypotheses that refer to broad concepts 
(e.g., cardiorespiratory fitness, endurance performance, mus-
cle enzymes, blood pressure, glucose metabolism, inflam-
matory parameters, cardiometabolic health). In turn, each of 
these broad concepts is assessed by several variables (e.g., 
long lists of different indicators of cardiorespiratory fitness, 
endurance performance, muscle enzymes, and so on). If 
researchers explicitly follow a ‘conjunction’ approach [78], 
they need to reject all the constituent null hypotheses (e.g., 
one for each of the multiple inflammatory parameters) in 
order to claim that they rejected the joint null hypothesis 
(i.e., that HIIT has a stronger anti-inflammatory effect, in 
general, than moderate-intensity continuous exercise). The 
conjunction approach, because of the nature of the joint 
null hypothesis (i.e., all constituent tests must be signifi-
cant), gives researchers only a single opportunity to reject 
the joint null hypothesis at the prespecified level of α (i.e., 
5%) and, therefore, despite entailing multiple tests, it does 
not raise the overall risk of a type I error. On the other hand, 
the conjunction approach is characterized by low statisti-
cal power because researchers would fail to reject the joint 
null hypothesis if even one of the constituent tests yields a 
non-significant result. The low statistical power is the likely 
reason why the conjunction approach is rarely encountered 
in the research literature.

In contrast, in the ‘disjunction’ approach, it is only nec-
essary to reject one of multiple constituent null hypoth-
eses in order for researchers to be able to claim that they 
have rejected the joint null hypothesis [78]. For exam-
ple, researchers may conclude that HIIT benefits muscle 
enzymes (or cardiometabolic health or arterial stiffness or 
cytokines) if only one or two of the variables that make up 
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this broad category, out of a larger set of tested variables, 
showed significant results in the expected direction. Conse-
quently, the disjunction approach increases the risk of type 
I error because researchers have multiple opportunities to 
incorrectly reject the joint null hypothesis (i.e., each test of 
a constituent null hypothesis is also an opportunity to reject 
the joint null hypothesis).

For two independent events, the probability of observing 
both of these events together is given by the product of their 
(separate) probabilities. Therefore, if the probability of mak-
ing a type I error is α = 0.05, the probability of not making 
a type I error (i.e., erroneously rejecting the null hypothesis 
when it is true) on two independent simultaneous tests would 
be given by (1 − α) × (1 − α) = (1 − α)2 = (1 − 0.05)2 = 0.9025. 
Conversely, the probability of making a type I error would be 
given by 1 − (1 − α)2 = 1 − 0.9025 = 0.0975. Therefore, more 
broadly, the formula for the inflation of the type I error rate 
due to conducting multiple independent probability tests, 
often referred to as the Šidàk equation, is α* = 1 − (1 − α)M, 
where α* is the inflated value of α as a result of conducting 
multiple independent tests, α is the conventionally defined 
probability of committing a type I error (typically, α = 0.05), 
and M is the number of independent probability tests con-
ducted at the level of α [79–81].

Applying this formula, one finds, for example, that con-
ducting 14 independent tests following the disjunction 
approach results in α = 0.51, namely > 10 times the nominal 
rate of 0.05. This means that, if 14 independent tests were to 
be conducted, one should expect the probability of making at 
least one type I error to be > 0.50. According to a statistical 
textbook: “It is especially important to realize that failing to 
control for multiple testing may play a major role in contrib-
uting to a disappointing failure rate in attempts to replicate 
published studies” (p. 216) [82].

As noted, the aforementioned formula relies on the sim-
plifying assumption that the multiple probability tests are 
independent of each other. This assumption, however, is 
usually false in practice since, in a common example, sev-
eral variables within the same data set may examine various 
facets of the same phenomenon (e.g., different parameters 
of glucose metabolism, immune function, or health-related 
quality of life), and will, therefore, probably be intercor-
related. To account for this dependence, researchers have 
proposed variations of the Šidák equation [83–86]. For 
example, an approach that originated in the field of genetics 
[87, 88] suggests that, when conducting 14 tests, instead of 
α rising to 0.51 when the tests are independent, α would rise 
to 0.48, 0.42, and 0.32 when the variables are intercorrelated 
r = 0.30, r = 0.50, and r = 0.70, respectively. Thus, while the 
formula α* = 1 − (1 − α)M represents only the ‘worst-case 
scenario,’ it is nevertheless a useful reminder of the pos-
sible deleterious consequences of conducting multiple tests 
without consideration of the inflation of the type I error rate.

With pre-registration still being a rarity in exercise sci-
ence [63], there is no guarantee that the dependent variables 
listed in an article represent a complete accounting of all 
the variables measured or analyzed. Even with this caveat 
in mind, it is common in the HIIT literature to encounter 
studies that follow the disjunction approach, hypothesizing 
joint null hypotheses, each consisting of numerous constitu-
ent tests, each tested at p < 0.05 [89–92]. This practice can 
increase the risk of type I error to high levels (see Fig. 2), 
even compared with other research within exercise science 
[55], thus raising serious concerns about the validity and 
reproducibility of any reported effects.

3.1.2 � Sampling Variability and the Instability of p Values

To compound the problem of multiplicity described in the 
previous section, the samples used in the HIIT literature 
tend to be small (e.g., with as few as five individuals per 
group). The combination of long lists of dependent vari-
ables and small samples creates a statistical ‘perfect storm,’ 
a recipe for non-replicable science [43, 44, 46, 93]. Due 
to sampling variability, small samples produce highly vola-
tile and imprecise estimates of the ‘true’ population values 
(e.g., means, standard deviations, intermean differences, and 
p values). The combination of instability and imprecision 
with an extremely lax criterion for determining ‘statistical 
significance,’ given a large enough number of tests, essen-
tially guarantees two outcomes: (i) at least some of the tests 
will cross the liberal threshold of ‘statistical significance’ 
and (ii) these findings will have a high likelihood of being 
non-replicable in different samples.

The small samples have occasionally been justified on 
the basis of the argument that the studies are ‘pilot’ trials 
that were “not designed to be powered to detect statistically 
significant differences in small or moderate effects” (p. 
2072) [94]. Instead, their purpose is portrayed as estimat-
ing “the magnitude of effect to lay the foundation for a fully 
powered efficacy trial” (p. 2072). It should be emphasized, 
however, that this rationale, although commonly encoun-
tered, is flawed, due to the inability of small-sample studies 
to accurately estimate population parameters [95, 96]. This 
lack of precision can lead to considerable over- or under-
estimations of the true effect size, with potentially devastat-
ing consequences for the design of subsequent larger trials.

As noted earlier (Sect. 2), although some researchers 
operate under the assumption that a finding of p < 0.05 
entails 95% confidence that the same result would re-occur 
in a subsequent replication study, this is not the case. This 
misconception has been termed the ‘replication fallacy’ or 
‘replication delusion’ [61]. In actuality, following an initial 
finding of p < 0.05, a subsequent (hypothetical) ‘perfect’ rep-
lication study drawing an equal number of participants from 
the same population has only about 50% chance of resulting 
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in a finding of p < 0.05 with the intergroup difference in 
the same direction [43]. Based on an empirical analysis of 
45,955 observed effects derived from the Cochrane Database 
of Systematic Reviews, van Zwet and Goodman [97] put 
the estimate considerably lower, at 29%. Many researchers 
may find these figures surprising, despite numerous relevant 
warnings having been issued in applied literatures, including 
in psychology [46], physiology [76, 98, 99], medicine [93, 
100], and pharmacology [101].

In an effort to understand the implications of p values 
for replication, statisticians have been analyzing the behav-
ior of p values under various conditions, including differ-
ent hypothetical population effect sizes, the level of α, and 
sample size [43, 102–105]. These efforts have resulted in 
formulas that enable researchers to calculate the probability 
of obtaining statistically significant results (e.g., p < 0.05) 
in subsequent replication studies [46]. One realization that 
has emerged from these investigations is that sampling vari-
ability renders p values extremely unstable and, therefore, 
an unreliable basis for drawing inferences about experimen-
tal effects in most applied-research contexts (given typical 
effect sizes and sample sizes), especially inferences regard-
ing the replicability of findings [44, 46, 106].

To illustrate the implications for the HIIT literature, we 
examined the 48-study database used in a meta-analysis by 
Mattioni Maturana et al. [65], which concluded that HIIT 
“was superior to [moderate-intensity continuous training] 
in improving V̇O2max ” (p. 559). In this meta-analysis, the 
median sample size was N = 10 per group, and the pooled 
effect size for V̇O2max (i.e., the most extensively studied 
outcome) in comparison to moderate-intensity continuous 

training was d = 0.40. Assuming that the pooled effect size 
approximates the ‘true’ population effect size δ, the com-
bination of these two numbers results in a noncentrality 
parameter z = δ√(N/2) = 0.40√(10/2) = 0.894, which cor-
responds to an expected p value of 0.371 (the observed mean 
p value was slightly lower, at 0.323, for reasons that will be 
explained in Sect. 3.1.4).

Under these conditions (N = 10 per group, α = 0.05, 
δ = 0.40), statistical power (1-β) is only 0.14 (i.e., 14% of p 
values are expected to be below 0.05), much lower than the 
0.80 conventionally considered adequate. As shown in Fig. 3, 
while 80% of the studies with 1-β = 0.81 will yield p values of 
0.047 or less, 80% of the studies with 1-β = 0.14 will yield p 
values of 0.707 or less (which also means that 20% of studies 
will yield p values higher than 0.707). Indeed, 39 of the 48 p 
values (81.25%) associated with the studies in the meta-anal-
ysis by Mattioni Maturana et al. [65] were lower than 0.707, 
whereas 9 of 48 (18.75%) were larger than 0.707.

As a demonstration of the volatility of p values one can 
expect from this combination of effect sizes and sample 
sizes, Fig. 4 shows that the 48 p values related to V̇O2max 
[65] covered the range from p = 0.00000004 to p = 1.000, 
and effect sizes exhibited an astounding range of 5.33 stand-
ard deviations, from − 0.74 to + 4.59. In other words, assum-
ing that the effect size of the phenomenon under investiga-
tion is in the range between small and medium, attempting 
to study it with approximately 10 participants per group can 
lead to any outcome [46].

Moreover, as noted earlier and illustrated in Fig.  5 
and Table 1, if an initial study yields p < 0.05, there is a 

Fig. 2   The inflation of the risk 
of type I error as a function of 
the number of probability tests 
(at p < 0.05). The estimates 
shown include the theoretical 
case of statistically independent 
(uncorrelated) variables (using 
the Šidàk equation), as well 
as hypothetical cases in which 
the variables being analyzed 
are intercorrelated at levels 
of r = 0.3, r = 0.5, and r = 0.7 
(using the Meff method) [87, 88]
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50% chance that a subsequent replication will also yield 
p < 0.05, regardless of whether the population effect size 
is assumed to be ‘known’ or ‘unknown.’ However, if the 
initial study yields a p value of 0.371 (i.e., the p value 
expected from studies with the characteristics of those 
in the meta-analysis by Mattioni Maturana et al. [65]), 
the probability that a subsequent replication would yield 
p < 0.05 is only 14.6%. In other words, 85.4% of direct and 
exact replications (i.e., without any changes to research 
protocols, including sample size) would likely yield 
p > 0.05. Moreover, as noted by Cumming [46] and shown 
in Table 1, to have 90% confidence that a replication would 

yield p < 0.05, the initial study would have to produce 
p < 0.00054.

As shown in Table  2 and Fig.  6, the p intervals are 
extremely wide. The two-sided p interval, from the 10th to 
the 90th percentile, extends from 0.006 to 0.828, whereas 
the one-sided p interval from zero to the 80th percentile 
extends to 0.662. This means that 80% of replication two-
tail p values would fall between 0.006 and 0.828 or between 
0.000 and 0.662. Indeed, 85.42% of the two-tail p values 
associated with the studies in the meta-analysis by Mattioni 
Maturana et al. [65] were between 0.006 and 0.828, and 
79.17% were between 0.000 and 0.662. For comparison (see 
Table 2), in a hypothetical literature in which one can expect 

Fig. 3   The probability distribution of two-tailed p for three hypotheti-
cal studies: i an adequately powered study, with population effect size 
δ = 0.5 and N = 64 per group (1 − β = 0.81), ii the example shown by 
Cumming [46] (p. 289), with population effect size δ = 0.5 and N = 32 
per group (1 − β = 0.52), and iii an example consistent with the stud-
ies included in the meta-analysis by Mattioni Maturana et  al. [65], 
with population effect size δ = 0.4 and N = 10 per group (1 − β = 0.14). 

The 80th percentiles indicate that 80% of the area under each curve 
(the probability of two-tail p values) lies to the left of the marker and 
the figure indicated is the upper limit of the 80% percentile p interval 
(with a lower limit of zero). The probabilities associated with conven-
tional intervals of p (i.e., 0.05, 0.01, 0.001) are shown as percentages 
in the histograms
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a study to yield p = 0.001, the two-sided p interval for a rep-
lication study, from the 10th to the 90th percentile, extends 
from 0.0000005 to 0.139, whereas the one-sided p interval 
from zero to the 80th percentile extends to 0.036 (or to 0.018 
in the case of a one-tail test).

3.1.3 � Positive Predictive Value and False Positive Risk

Positive predictive value (PPV) is defined as the probability 
that a ‘positive’ research finding (e.g., p < 0.05) represents a 
true effect (i.e., that the finding is a true positive). PPV can 
be estimated by the formula [107, 108]:

where 1  – β is statistical power, R indicates the prestudy 
odds (i.e., the odds that an effect is indeed non-null prior to 
the study being conducted, based on prior evidence), and α 
is the probability of a type I error. Although R is difficult to 
estimate, the highest value one can reasonably assume when 
there are no prior studies on a given topic is 50% (i.e., a 
50–50 chance). Even in the unrealistic scenario of R = 0.50, 
using the above formula shows, for example, that conducting 
19, 23, 32, or 41 independent tests in underpowered studies 

PPV =
(1 − �)R

(1 − �)R + �

(e.g., 1–β = 0.14) will result in only 7–10% probability of a 
true positive (see Fig. 7). Under the more realistic scenarios 
of 1-in-4 or 1-in-5 odds (i.e., R = 0.25 or 0.20), the prob-
ability of a true positive drops to 3–5%.

As noted in the previous section, in the meta-analysis by 
Mattioni Maturana et al. [65], the median sample size was 
10 per group (the mean was 13.2) and the pooled effect 
was d = 0.40. As shown in Fig. 8, assuming that this effect 
size approximates the ‘true’ population effect (although 
this is likely an overestimate for reasons explained in 
Sect. 3.1.5), the median study exhibited only 14% statisti-
cal power (the mean of 16% was slightly higher due to 
one study with 75% power). This level of power is even 
lower than the median power of 21% highlighted as under-
mining the reliability of neuroscience [107]. Researchers 
have found that between 43 and 57% of studies in differ-
ent domains of biomedicine have statistical power in the 
0–20% range [109]. Of the 48 studies on V̇O2max included 
in the Mattioni Maturana et al. [65] meta-analysis, consid-
ering the pooled effect size of d = 0.40 as the effect size 

Fig. 4   The p values associated with the 48 studies comparing maxi-
mum oxygen consumption ( V̇O

2max
 ) between high intensity interval 

training (HIIT) and moderate-intensity continuous exercise groups 
that were included in the meta-analysis by Mattioni Maturana et  al. 
[65], illustrating the range from 0.000 to 1.000

Fig. 5   Probability (y axis) that a hypothetical ‘perfect’ replication 
study (i.e., drawing samples of equal size from the same popula-
tion as the original, and applying identical treatment and assess-
ment methods) would obtain p < 0.05, as a function of the p value 
obtained in the original study (under two assumptions: that the popu-
lation effect size is known, and equal to the effect size obtained in 
the initial study, or not). It can be seen that if the initial study yielded 
p < 0.05, there is only a 50% chance that a replication would also 
obtain p < 0.05. If the initial study yielded p = 0.371 (i.e., the p value 
expected from studies with the characteristics of those included in the 
meta-analysis by Mattioni Maturana et  al. [65], given δ = 0.40 and 
N = 10 per group), the probability of obtaining p < 0.05 from a repli-
cation would be only 0.15 and 0.25, respectively
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of interest, 42 (88%) had statistical power in the 0–20% 
range and all but one (47 of 48, or 98%) were in the 0–33% 
range. The combination of the type I error rate (α) being 
allowed to escalate and the extraordinarily small (i.e., 
severely underpowered) studies can easily (i.e., in com-
mon, entirely realistic scenarios) lead to false discovery 
rates that approach 100%.

A complementary way to think of this problem is in terms 
of the false positive risk (FPR), namely the probability that a 
‘significant’ result (e.g., p < 0.05) represents a false positive. 
The FPR can be estimated by the formula [60]:

where p is the p value of a study, R indicates the prestudy odds 
(i.e., the odds that an effect is indeed non-null prior to the 
study being conducted, based on prior evidence), and 1 − β is 
the statistical power of the study. The FPR is related to efforts 
[40–42], reviewed in Sect. 2, to associate the p value from a 
single study to the lower bound of the long-run risk of type 
I error (α). Applying the formula to the studies on V̇O2max 
that were included in the Mattioni Maturana et al. [65] meta-
analysis, and assuming that R = 0.50, shows that only three 

FPR =
p(1 − R)

p(1 − R) + (1 − �)R

Table 1   Probability of obtaining p < 0.05 from a replication as a 
function of the p value obtained in an initial experiment (p obt) under 
two assumptions (i.e., that the population effect size is known, and 
equal to the effect size obtained in the initial study, or not). The col-
umn labeled "Goodman" contains the values calculated by Goodman 

[43] (Table 1, p. 877), presented here as evidence of validation. The 
p value of 0.371 (i.e., the expected p value from the meta-analysis by 
Mattioni Maturana et al. [65], given δ = 0.40 and N = 10 per group) 
is also included, to highlight the low probabilities of obtaining p < 
0.05 from a replication study

p obt Assuming δ is known (δ = d) Assuming δ is unknown

2-tail Goodman 1-tail 2-tail Goodman 1-tail

0.001 0.908 0.91 0.950 0.827 0.78 0.878
0.005 0.802 0.80 0.877 0.726 0.71 0.794
0.010 0.731 0.73 0.824 0.669 0.66 0.745
0.030 0.583 0.58 0.700 0.561 0.56 0.645
0.050 0.500 0.50 0.624 0.503 0.50 0.588
0.100 0.376 0.37 0.500 0.417 0.41 0.500
0.200 0.249 0.358 0.327 0.399
0.371 0.146 0.227 0.247 0.298
0.400 0.134 0.211 0.238 0.285
0.600 0.082 0.131 0.195 0.214

Table 2   Two-sided (extending from the 10th to the 90th percentile) 
and one-sided (extending from zero to the 80th percentile) p inter-
vals for two- and one-tail single-study replications as a function of 
the p value obtained in an initial (two-tail) study (p obt). P intervals 
indicate the probability of obtaining p < 0.05 in a single, identical 
replication study. Compare to the values calculated by Cumming [46] 

(Table 1, p. 292) for validation. As noted by Cumming [46], "for the 
90% p interval [one-tail] to be [0, 0.05], p obt must equal 0.00054" 
(p. 293). The p value of 0.371 (i.e., the expected p value from the 
studies included in the meta-analysis by Mattioni Maturana et  al. 
[65], given δ = 0.40 and N = 10 per group) is also included, to high-
light the extraordinarily wide p interval associated with it

p obt 10–90th percentile interval, 
two-tail

10–90th percentile interval, 
one-tail

0–80th percentile interval, 
two-tail

0–80th percen-
tile interval, 
one-tail

0.00054 [0.0000005, 0.099] [0.0000001, 0.050] [0.000, 0.023] [0.000, 0.011]
0.001 [0.0000005, 0.139] [0.0000005, 0.070] [0.000, 0.036] [0.000, 0.018]
0.010 [0.000012, 0.408] [0.000006, 0.223] [0.000, 0.162] [0.000, 0.083]
0.020 [0.000035, 0.517] [0.000018, 0.304] [0.000, 0.242] [0.000, 0.128]
0.050 [0.000162, 0.648] [0.000081, 0.441] [0.000, 0.379] [0.000, 0.221]
0.100 [0.000544, 0.728] [0.000273, 0.567] [0.000, 0.491] [0.000, 0.325]
0.200 [0.001924, 0.789] [0.000988, 0.702] [0.000, 0.591] [0.000, 0.464]
0.371 [0.005998, 0.828] [0.003397, 0.821] [0.000, 0.662] [0.000, 0.616]
0.400 [0.006848, 0.832] [0.003978, 0.834] [0.000, 0.669] [0.000, 0.636]
0.600 [0.013091, 0.849] [0.009726, 0.901] [0.000, 0.701] [0.000, 0.747]
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of the 48 studies produced FPR lower than 0.05 (see Fig. 9). 
Given their low level of statistical power (median 0.155, mean 
0.169), even under the unrealistic assumption of R = 0.50, the 
FPR of the 13 studies that produced p < 0.05 was as high as 
0.245, with a mean of 0.130 and a median of 0.123 (recall 
that the risk of type I error associated with p = 0.05 has been 
estimated as at least 0.289).

3.1.4 � Excess of ‘Significant’ Results

Assuming that the null hypothesis is false (e.g., that there is 
a difference between HIIT and moderate-intensity continu-
ous training in terms of improving V̇O2max ), and the effect 
size is δ = 0.40, samples of 10 per group are expected to 
reject the false null hypothesis in only 14% of the cases (i.e., 
statistical power of 14%). Instead, as shown in Fig. 10, 13 
of the 48 studies (27.1%) included in the meta-analysis by 
Mattioni Maturana et al. [65], nearly double the expected 
rate, produced results with p < 0.05.

This rate indicates an ‘excess of significant findings’ 
according to the test proposed by Ioannidis and Trikalinos 
[110]. This is a χ2 statistic calculated as:

A =
[
(O − E)2∕E + (O − E)2∕(n − E)

]

where O is the number of studies reporting ‘statistically 
significant’ results (p < 0.05), E is the sum of the levels of 
statistical power in all the studies in the sample to detect 
the population effect size (assumed here to equal the pooled 
effect size from the meta-analysis, namely d = 0.40), and n 
is the number of studies in the sample. For the studies in the 
meta-analysis by Mattioni Maturana et al. [65], E is 7.851, 
O = 13, and n = 48. Therefore, χ2(1) = 4.038, p = 0.044, indi-
cating the presence of an excessive proportion of ‘statisti-
cally significant’ results.

Various mechanisms may account for this phenom-
enon [111]. One category includes ‘researcher degrees of 
freedom’ [112], some of which may be questionable (e.g., 
‘p-hacking,’ selective outcome reporting, selective removal 
of data points, failing to account for multiplicity) and some 
of which may reflect publication bias (e.g., the ‘file drawer’ 
problem, namely the low probability of studies reporting 
non-significant results being accepted for publication) [113].

3.1.5 � ‘Winner's Curse’

An additional problem, named ‘winner’s curse’ [114, 115], 
emerges from underpowered studies. The ‘winner’s curse’ 
refers to the fact that, when an underpowered study hap-
pens to correctly reject a null hypothesis, the estimate of 
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Fig. 6   p intervals estimated to indicate the probability of obtaining 
p < 0.05 in a replication study as a function of the (two-tail) p value 
in an initial study. The two-sided p intervals, extending from the 10th 
to the 90th percentile, are shown on the left, whereas the one-sided 
p intervals, extending from zero to the 80th percentile, are shown on 
the right. Estimates are shown for both two-tail and one-tail tests in 

the replication study. The upper limits of the 90th percentile (left) 
and 80th percentile (right) p intervals associated with an initial study 
yielding p = 0.371 (i.e., the p value expected from studies with the 
characteristics of those included in the meta-analysis by Mattioni 
Maturana et al. [65], given δ = 0.40 and N = 10 per group) are high-
lighted
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the magnitude of the effect derived from such a study will 
likely be exaggerated. This is because, for a result to sat-
isfy the criterion of statistical significance (even the uncor-
rected p < 0.05) in an underpowered study, the effect will 
have to be unusually large. Young et al. [115] described 
the problem as follows:

The average result from multiple studies yields a rea-
sonable estimate of a "true" relationship. However, 
the more extreme, spectacular results (the largest 
treatment effects, the strongest associations, or the 
most unusually novel and exciting biological stories) 
may be preferentially published. Journals serve as 
intermediaries and may suffer minimal immediate 
consequences for errors of over- or mis-estimation, 
but it is the consumers of these laboratory and clini-
cal results (other expert scientists; trainees choosing 
fields of endeavour; physicians and their patients; 
funding agencies; the media) who are "cursed" if 
these results are severely exaggerated—overvalued 
and unrepresentative of the true outcomes of many 
similar experiments (p. 1418).

Fig. 7   Positive predictive value (PPV), namely the probability that a 
‘positive’ research finding represents a true effect (i.e., that the find-
ing is a true positive), as a function of the type I error rate (α), when 
statistical power (1 − β) is sufficient (i.e., 1 − β = 0.80) and when it is 
the median of the power of studies included in the meta-analysis by 
Mattioni Maturana et al. [65] comparing high intensity interval train-
ing (HIIT) and moderate-intensity continuous training on maximum 
oxygen consumption ( V̇O

2max
 ) (i.e., 1 − β = 0.14). When α is allowed 

to escalate to high levels, even under the unrealistic scenario of 
R = 0.50, the PPV drops to < 0.10

Fig. 8   Levels of statistical power (1 − β) for each of the 48 studies 
included in the Mattioni Maturana et al. [65] meta-analysis compar-
ing the effects of high intensity interval training (HIIT) and moder-
ate-intensity continuous exercise on maximum oxygen consumption 
( V̇O

2max
 ). Power was calculated from the reported sample sizes, 

assuming that the pooled effect (d = 0.40) represents the ‘true’ popu-
lation effect and α = 0.05. Τhe median study exhibited 14% statisti-
cal power, 42 of 48 studies (88%) had statistical power in the 0–20% 
range and all but one (47 of 48, or 98%) were in the 0–33% range

Fig. 9   The estimated false-positive risk (FPR) of the studies on maxi-
mum oxygen consumption ( V̇O

2max
 ) that were included in the Mat-

tioni Maturana et al. [65] meta-analysis, assuming R = 0.50. Only 3 of 
the 48 studies (6.25%) produced FPR < 0.05. The FPR of the 13 stud-
ies that produced p < 0.05 was as high as 0.245, with a mean of 0.130 
and a median of 0.123. Two related figures are highlighted for refer-
ence: i the minimum risk of type I error (α) associated with p = 0.05 
has been estimated as 0.289; ii the relationship between p values and 
α holds until p < 1/e, namely p < 0.368, after which α reaches a pla-
teau
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The ‘winner's curse’ can be shown by simulation, fol-
lowing the procedure proposed by Colquhoun [116]. If 
we consider the pooled effect size reported by Mattioni 

Maturana et al. [65], namely d = 0.40, and run 100,000 simu-
lated ‘experiments’ by drawing random samples of 100 per 
group from populations designed to differ by d = 0.40 (i.e., 

Fig. 10   The expected and 
observed frequencies of p 
values, in intervals ranging 
from p < 0.05 to 0.95 < p < 1.00, 
resulting from the studies on 
maximum oxygen consumption 
( V̇O

2max
 ) included in the meta-

analysis by Mattioni Maturana 
et al. [65], illustrating the pres-
ence of an excessive proportion 
of studies with p < 0.05
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Fig. 11   Results of simulated experiments (100,000 simulated tests 
per data point) illustrating the phenomenon of ‘winner's curse,’ 
namely the inflation of the apparent effect size (d) compared with the 
known population effect size (δ) from studies with various sample 
sizes resulting in p < 0.05. For sample sizes of 10 per group, namely 
the median sample size of the 48 studies on maximum oxygen con-
sumption ( V̇O

2max
 ) included in the meta-analysis by Mattioni Matu-

rana et al. [65], a small effect (δ = 0.20) can appear as large (d = 0.80), 
while a population effect size of δ = 0.40 (the pooled effect from the 
meta-analysis by Mattioni Maturana et  al. [65]) can appear highly 
exaggerated, namely d = 1.04. Notice that samples of N = 100 per 
group suffice to eliminate the inflation of medium population effect 
sizes (δ = d = 0.50) but samples of N = ~ 700 per group are required to 
eliminate the inflation for small population effect sizes (δ = d = 0.20)
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experiments with 80% statistical power), we find that (i) con-
sistent with the theoretical power level of 80.36%, 80.38% 
of the comparisons satisfy the p < 0.05 criterion of statistical 
significance, and (ii) importantly, the average observed effect 
size is d = 0.45, which approximates the given effect size 
of d = 0.40. On the other hand, if one runs 100,000 simu-
lated experiments with the same effect size but sample sizes 
of 10 per group, namely the median sample size of the 48 
studies on V̇O2max included in the meta-analysis by Mat-
tioni Maturana et al. [65], (i) the statistical power of 13.66% 
approximates the theoretical value of 13.55% but (ii) the 
average observed effect size is highly exaggerated, namely 
d = 1.04 instead of the given δ = 0.40 (see Fig. 11). Indeed, 
after excluding an apparent outlier with a nearly fivefold 
effect size [66], the average effect size of the remaining 12 
studies on V̇O2max in the meta-analysis by Mattioni Maturana 
et al. [65] that produced p < 0.05 was 1.01. In general, larger 
sample sizes enable the estimation of the population effects 
with greater precision, whereas small samples increase the 
risk of greatly exaggerated estimates of effects.

3.1.6 � Accuracy of Population Estimates

Davis-Stober and Dana [117] have proposed an index of the 
accuracy of population estimates produced by the conven-
tional method of ordinary least squares (used in most of 
the commonly employed statistical tests, including tests of 
comparisons between sample means) compared against a 
‘benchmark’ method of estimation that uses random esti-
mates for both the direction and the magnitude of treatment 
effects (called ‘random least squares’). The index, called 
the v-statistic, can range from zero to one, with a value of 
one indicating that the conventional method of estimation 
(ordinary least squares) is consistently more accurate than 
the random method, and a value of zero indicating that the 
random method of estimation is consistently more accurate 
than ordinary least squares. The values of the v-statistic are 
influenced by (i) the sample sizes, (ii) the magnitude of the 
effect being investigated, and (iii) the number of parameters 
that need to be estimated (i.e., two means in the case of a 
t-test). Preempting the criticism that comparing the accuracy 
of statistical tests against a ‘benchmark’ of random guess-
ing sets a meaninglessly ‘low bar,’ Davis-Stober and Dana 
[117] wrote:

If one's estimates are less accurate than our guessing 
benchmark more than half of the time, there is little 
point in using them to establish treatment effects. As 
low as this hurdle may seem, we show that v < 0.5, or 
even v = 0, can happen surprisingly often, particularly 
when researching effect sizes conventionally catego-
rized as small and medium (p. 6)

This is precisely the scenario encountered in the HIIT 
literature: small- to medium-size effects are being studied 
with small samples. Therefore, to gauge the accuracy of esti-
mates derived from the studies included in the meta-analysis 
by Mattioni Maturana et al. [65], comparing the effects of 
HIIT and moderate-intensity continuous exercise on V̇O2max , 
the v-statistic for each study was calculated following the 
computational method outlined by Lakens and Evers [118]. 
The average v-statistic was 0.124 and the median was 0.000. 
Nearly all studies (46 of 48, or 96%) had values of the v-sta-
tistic below 0.500, and more than half (28 of 48, or 58%) 
had a v-statistic of zero (see Fig. 12). In the words of Lak-
ens and Evers [118], “obviously, if a random estimator is 
more accurate than the estimator based on the observed data 
(indicated by a v-statistic smaller than 0.5), a study does not 
really reduce the uncertainty about whether the hypothesis 
is true” (p. 283).

3.1.7 � Summary

When judged by conventional statistical standards, most 
studies investigating the effects of HIIT on fitness or health 
have limited informational yield. This is because they are 
examining small-to-medium effects with small samples, and 
commonly test a plethora of dependent variables. Estimates 

Fig. 12   Values of the v-statistic proposed by Davis-Stober and Dana 
[116] for each of the 48 studies on maximum oxygen consumption 
( V̇O

2max
 ) included in the meta-analysis by Mattioni Maturana et  al. 

[65], comparing the effects of high intensity interval training (HIIT) 
and moderate-intensity continuous exercise. The v-statistic is an 
index of the relative accuracy of population estimates produced by 
the traditional method of ordinary least squares compared with ‘ran-
dom least squares’ (i.e., random estimates for both the direction and 
the magnitude of treatment effects). The average v-statistic was 0.124 
and the median was 0.000. Nearly all studies (46 of 48, or 96%) had 
values of the v-statistic below 0.500, and more than half (28 of 48, or 
58%) had a v-statistic of zero, suggesting that random estimates were 
consistently more accurate than estimates based on the observed data
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of small-to-medium effects derived from small, underpow-
ered studies are characterized by such imprecision and 
volatility that, given a large enough number of tests, some 
will probably cross the conventional threshold of statisti-
cal significance. Such ‘statistically significant’ results will 
likely reflect chance and, therefore, entail a low probability 
of replication. In addition, even if they represent true effects, 
such results likely overestimate the magnitude of the under-
lying effects.

3.2 � The ‘Is As Effective As’ Problem

As noted in Sect.  2, statisticians commonly emphasize 
that “absence of evidence is not evidence of absence” [53, 
54]. The principle behind this motto is that p > 0.05 (i.e., 
‘absence of evidence’) provides no indication that the null 
effect, namely μ1 − μ2 = 0, is the most likely result (i.e., ‘evi-
dence of absence’). In other words, finding p > 0.05 for a 
comparison between two sample means (such as the mean 
of a group participating in HIIT and a group participating in 
moderate-intensity continuous exercise training) only per-
mits a researcher to decide not to reject the null hypothesis. 
Such a result cannot be taken as a basis for accepting the 
null hypothesis (i.e., to conclude that there is ‘no difference’ 
or that the two treatments being compared have effects that 
are ‘same,’ ‘equal,’ ‘similar,’ ‘equivalent,’ or ‘comparable’).

Establishing the ‘equivalence’ of two interventions 
requires a different hypothesis, different design, differ-
ent power calculations, and a different statistical approach 
[50–52]. An equivalence study begins with the difficult deci-
sion of determining a difference between the treatments that 
represents the smallest effect size of interest (e.g., smaller 
than any effect that can be considered clinically relevant, 
meaningful, or worthwhile). Then, the null hypothesis is for-
mulated, stating that the difference between the two treat-
ment means, or part of its surrounding confidence interval, 
falls outside the prespecified margin (i.e., suggesting that the 
treatments may not be equivalent, or one may be meaning-
fully more effective than the other). The alternative hypoth-
esis would be that the difference between the treatments, and 
its surrounding confidence interval, are within the prespeci-
fied margin (i.e., that the treatments are equivalent, or one 
is as effective as the other). Power calculations for an equiv-
alence study are based on the largest treatment difference 
considered to be practically irrelevant or inconsequential. 
The hypothesis of equivalence can be tested by specialized 
procedures, such as the two one-sided tests (TOST) method 
[119–121].

Most researchers carefully avoid the use of the adjectives 
‘similar’ or ‘comparable’ (let alone ‘equal’ or ‘same’) to 
describe treatment means following a finding of p > 0.05. 
This is because a very common scenario is that tests fail to 
reject the null hypothesis, even though it is false, because 

of low statistical power (e.g., having too few participants 
to detect an effect given the magnitude of that effect). Yet, 
the HIIT literature contains numerous claims that vari-
ous HIIT protocols have ‘similar’ or ‘comparable’ effects 
to more time-consuming moderate-intensity continuous 
exercise. Invariably, these claims are made on the basis of 
findings of p > 0.05 from studies that are underpowered to 
detect small (d = 0.20, requiring N = 394 per group), medium 
(d = 0.50, requiring N = 64 per group), or even large effects 
(d = 0.80, requiring N = 26 per group). As noted earlier, 
of the 48 studies included in the Mattioni Maturana et al. 
meta-analysis [65] comparing HIIT to moderate-intensity 
continuous exercise on V̇O2max , all but one (47 of 48, or 
98%) had statistical power in the 0–33% range. Examples of 
claims made on the basis of underpowered studies include 
claims of ‘equal’ changes across a wide range of physiologi-
cal parameters (samples of 8 and 8) [92], ‘similar’ changes 
in aerobic capacity (samples of 7 and 7) [122], ‘similar’ 
metabolic adaptations (samples of 10 and 10) [89], ‘similar’ 
changes in arterial stiffness (samples of 10 and 10) [123], 
‘similar’ cardiometabolic changes (samples of 9, 10, and 6) 
[90], ‘similar’ cardiorespiratory adaptations in patients with 
heart failure (samples of 8 and 8) [124], ‘similar’ changes 
in body composition and fitness (samples of 16, 16, and 
14) [125], ‘similar’ muscular and performance changes 
(samples of 8 and 8) [126], and ‘similar’ enjoyment and 
adherence (samples of 9 and 8) [127]. Likewise, such claims 
are made on the basis of findings of p > 0.05 from studies 
using within-subject designs that are also underpowered to 
detect small (d = 0.20, requiring N = 199), medium (d = 0.50, 
requiring N = 34), or even large effects (d = 0.80, requiring 
N = 15). Examples include claims of ‘similar’ adaptations 
in signaling molecules associated with mitochondrial bio-
genesis (N = 10) [128], ‘similar’ mitochondrial function 
(N = 8) [129], ‘similar’ 24-h oxygen consumption (N = 8) 
[130], ‘similar’ energy expenditure (N = 9) [131], ‘similar’ 
increases in serum brain-derived neurotrophic factor (N = 8) 
[132], and ‘similar’ enjoyment levels (N = 7 [133]; N = 11 
[134]). To reiterate the essential point, claims of ‘similar’ 
or ‘comparable’ effects are unjustified on the basis of ‘non-
significant’ comparisons between means (p > 0.05). Claims 
of ‘similar’ or ‘comparable’ effects can only be justified if 
appropriate hypotheses and associated tests (i.e., of equiva-
lence or non-inferiority) are used [119–121].

3.2.1 � Poor Reporting of Power Calculations

By using p > 0.05 as a criterion for establishing equivalence, 
there is no end to the extraordinary discoveries that research-
ers can claim. One common approach has been using 
severely underpowered comparative studies in conjunction 
with the p > 0.05 criterion in a race to discover the smallest 
duration or amount of exercise that can still be claimed to 
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be ‘as effective as’ (or ‘similar’ or ‘comparable’ to) either 
‘traditional’ HIIT or moderate-intensity continuous exer-
cise. These minimalist forms have been termed ‘low-volume 
HIIT,’ ‘very low volume HIIT,’ or ‘reduced exertion HIIT,’ 
among other labels.

To illustrate the problems associated with this approach, 
we examined the studies included in a recent systematic 
review of ‘low-volume HIIT,’ which concluded that it “can 
induce similar, and at times greater, improvements in car-
diorespiratory fitness, glucose control, blood pressure, and 
cardiac function when compared to more traditional forms 
of aerobic exercise training including high-volume HIIT 
and moderate intensity continuous training, despite requir-
ing less time commitment and lower energy expenditure” 
(p. 1013) [135]. This is a remarkable claim because ‘low-
volume HIIT’ was said to differ from regular HIIT solely by 
entailing a lower total duration of high-intensity intervals 
(< 15 min). Otherwise, the two modalities of training were 
said to share common features (e.g., intensity of 80–100% 
V̇O2max or HRmax, duration of each high-intensity interval 
of 1–4 min, work-to-rest ratio of 1:1 to 1:2). In other words, 
the review concluded that, contrary to conventional wisdom, 
doing less exercise is ‘as effective as’ (or, remarkably, even 
‘more effective than’) doing more exercise while holding 
other important aspects of the exercise ‘dose’ constant.

The review was based on 11 studies (see Table 3) and 
used the adjective ‘comparable’ to describe the results of 
the comparisons between the minimalist versions of HIIT 
and the comparator groups in 9 of the 11 cases [135]. Pre-
dictably, the studies had the common denominator of being 
underpowered (sample size range: 5–22 per group, mean: 
13.5, mode: 12). Using a two-tail test, a two-group com-
parative study with N = 12 per group has 7.6%, 21.6%, and 
46.6% statistical power to detect a small (d = 0.20), medium 
(d = 0.50), and large (d = 0.80) effect, respectively.

Researchers might wonder how this is possible since 
item 7a of the CONSORT checklist explicitly states that 
authors must explain “how sample size was determined” 
[147]. Given the sample size range of 5–22 per group, it 
is unsurprising that the claimed adequacy of the sample 
size could not be verified in any of the 11 studies. In four, 
no information was provided for how the sample size was 
determined. In the remaining studies, the irregularities 
ranged from not providing complete information (e.g., not 
stating the anticipated effect size), citing nonverifiable or 
incorrect information (e.g., citing effect sizes for within-
group changes from previous studies but aiming to conduct 
between-group comparisons), citing the effect size from an 
early study [66] that has been identified as an outlier [148], 
to reporting the required information but claiming that the 
sample size needed to be only a fraction of what the calcula-
tions indicated in order to reach the desired level of statisti-
cal power. As one example:Ta
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High-Intensity Interval Training and Replication

Based on a meta-analysis that compared HIIT with 
continuous endurance training on maximal oxygen 
update (V̇O

2max
max) improvements in adults, the 

estimated standardized mean difference (Cohen's d) 
between HIIT and [moderate-intensity continuous 
training] was approximately 0.4. Therefore, it was 
anticipated that a sample size of 12 participants per 
group was adequate to detect this difference between 
groups on our primary outcome (i.e., V̇O

2max
), with a 

power of 0.8 at an alpha level of 0.05 (pp. 1998–1999) 
[141].

To reach 80% statistical power given an effect size 
d = 0.4 requires 100 participants per group rather than 12. 
Bonafiglia et al. [149] similarly found that 21 of 27 stud-
ies included in a meta-analysis comparing the effects of 
sprint interval training and continuous training either did 
not report sample-size calculations or did not provide full 
information. The reporting of power calculations is subopti-
mal both in the medical literature [150] and within exercise 
and sport science [151]. According to Charles et al. [150], 
only 34% of trials published in medical journals reported all 
data required to calculate the sample size, had accurate cal-
culations, and were based on accurate assumptions. Of the 
remaining, 43% did not report all the required parameters to 
allow readers to verify the calculation, and 5% did not report 
sample size calculations. Within exercise and sport science, 
the situation appears worse. An analysis of 120 manuscripts 
submitted to a prominent disciplinary journal [151] shows 
that the median sample size was 19. Only 12 of the manu-
scripts (10%) included any sample-size calculations and, of 
them, four did not provide a justification for the cited effect 
size. Similar to the situation in the HIIT literature discussed 
in this section [135], none of the 12 manuscripts provided 
all the information required to enable the correct reproduc-
tion of the cited sample-size goal (i.e., the statistical test to 
be conducted, the targeted effect size, the level of α, and the 
desired level of statistical power). This situation is of grave 
concern and necessitates urgent change [77].

4 � A Crisis of Confidence, a Looming 
Trainwreck, or an Opportunity for Reform?

Over the past 15 years, the research literature on HIIT has 
produced some extraordinary claims, which, upon closer 
inspection, are backed by surprisingly fragile evidence. This 
phenomenon can be analyzed from several angles. Perhaps 
the striking discrepancy between the boldness of the claims 
and the limitations of the experimental evidence is a reflec-
tion of a field eager for a scientific breakthrough. As noted in 
Sect. 2, journal editors and peer reviewers may, consciously 
or subconsciously, “apply lower standards” (p. 4) [62] when 

evaluating manuscripts reporting findings that seem highly 
intriguing or novel. Likewise, the willingness of the press 
to disseminate, and occasionally amplify, the extraordinary 
claims surrounding HIIT also suggests that the public at 
large may be eager for a breakthrough from exercise science, 
some miraculous discovery that would magnify and acceler-
ate the benefits of exercise while requiring less effort [152].

An equally fascinating question pertains to the apparent 
willingness of exercise science as a research field to enter a 
state of ‘suspension of disbelief,’ accepting and propagating 
claims that defy conventional wisdom and research choices 
that directly contradict established methodological and sta-
tistical best practices. Like other scientific fields, exercise 
science will inevitably, sooner or later, have to confront its 
own crisis of replication and confidence [63]. Postponing 
this conversation will not help avert it. Therefore, it seems 
ironic that, while a push for more stringent methodologies 
[112, 153] and more responsible reporting [154] is sweeping 
the scientific landscape, one of the most prominent research 
lines within exercise science is characterized by a prepon-
derance of studies with questionable statistical standards.

In the previous sections, it was shown that most sam-
ples in the HIIT literature are small, and thus the studies 
are underpowered to detect small, medium, or even large 
effects. This is important because the effect sizes, in most 
cases (especially when HIIT is compared against moder-
ate-intensity continuous exercise rather than a no-exercise 
control), are likely to be small. It was also shown that most 
studies do not have one outcome designated as primary but 
rather tend to include long lists of dependent variables, all 
of which are tested at p < 0.05, without consideration for the 
inflation of α. There is also great flexibility in designs, defi-
nitions, outcomes, and analytic approaches, from the defini-
tion of HIIT to the selection of variables to represent vari-
ous domains of physiological function (e.g., metabolism). 
Moreover, extraordinary claims related to the effectiveness 
of HIIT, along with claims that HIIT addresses “the most 
commonly cited reason for not exercising” (p. 212) [155] or 
“the primary reason for [the] failure to exercise on a regular 
basis” (p. 61) [156], namely lack of time, stimulate the inter-
est or curiosity of the public (e.g., the narrative that, con-
trary to current recommendations, one only needs to exercise 
for a few seconds per day). The intense interest from the 
media may encourage or incentivize researchers to produce 
research results that support compelling narratives but may 
have low replicability. In particular, claims that smaller and 
smaller amounts of exercise were found to be ‘effective’ for 
improving fitness and health are bound to capture the inter-
est of the general public. For example, recent media reports 
have highlighted that repeated 4-s spurts of exercise, totaling 
no more than 2 min per day [157], or a single 3-s muscular 
contraction per day [158] have been found to result in ‘sig-
nificant’ gains in aerobic capacity (by 13%) and muscular 
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strength (by 12%), respectively (based on samples of 11 and 
13, respectively).

Arguably, there is a striking similarity between the pat-
terns seen in the HIIT literature and what was unfolding 
in the research field investigating phenomena of behavio-
ral priming within psychology in the 2000s. The literature 
was being inundated with findings that have been described 
as “implausible” (p. 13) [159], “spectacular” (p. 19) [160], 
“fascinating” (p. 20) [161], and “eye-catching and counter-
intuitive… the kind of sexy research that popular science 
writers love to describe” (p. 6) [161]. Failed attempts to 
replicate several of these widely publicized results led to an 
ongoing ‘replication crisis’ [162] or ‘crisis of confidence’ 
[163] in psychology. In response, Nobel laureate Daniel 
Kahneman wrote an open letter to researchers involved 
in research on priming, in which he encouraged them to 
try to remove the question mark that had been attached to 
their field [164]. He emphasized: “Your problem is not with 
the few people who have actively challenged the validity 
of some priming results. It is with the much larger popula-
tion of colleagues who in the past accepted your surprising 
results as facts when they were published.” Reminding read-
ers that “a posture of defiant denial is self-defeating,” Kah-
neman pointed out what was at stake: “I see a train wreck 
looming. I expect the first victims to be young people on 
the job market. Being associated with a controversial and 
suspicious field will put them at a severe disadvantage in the 
competition for positions. Because of the high visibility of 
the issue, you may already expect the coming crop of gradu-
ates to encounter problems.”

Although undertaking the kind of radical reforms advo-
cated by Kahneman is unlikely to be universally appreci-
ated or endorsed, psychology has, to some extent, entered a 
period of critical self-reflection. Many authors have argued 
that the replication crisis can be seen as an opportunity for 
positive change [165–167]. This perspective has grown into 
a movement [168] that has even been characterized, perhaps 
optimistically or prematurely, as a ‘renaissance’ [169]. The 
winds of change are reaching other fields, even beyond the 
social sciences, such as cancer biology and drug develop-
ment, which are coming to terms with the fact that they, too, 
are facing a replication crisis [170, 171].

The replication crisis in psychology offers a potential 
blueprint for how exercise science could proceed. Arguing 
that there is no problem is certainly a comforting option 
but, to echo Kahneman, “a posture of defiant denial is self-
defeating.” Continuing to overlook the fundamental princi-
ples of statistics in pursuit of implausible results that will 
capture the next headline will predictably lead to poor long-
term outcomes. The exorbitant claims in the HIIT literature 
could serve as a clarion call that should inspire a period of 

critical self-reflection and positive reform. Recognizing the 
pitfalls, returning to, and respecting the fundamentals could 
have a lasting positive influence on the integrity, societal 
value, and reputation of exercise science.

It is, therefore, encouraging that the first signs of reform 
within exercise science have started to appear. Statistical 
experts [23, 77] and journal editors [76, 99, 151, 172] are 
making strong cases about the need to improve the quality 
of research designs and statistical analyses. Newly created 
organizations, such as the Consortium for Transparency in 
Exercise Science [63] and the Society for Transparency, 
Openness, and Replication in Kinesiology, are spearhead-
ing educational initiatives aimed at promoting stronger 
research practices. In psychology, arguably one of the most 
consequential reform efforts has been the push to expand 
the practice of study preregistration [173–176]. Therefore, 
the growing number of journals within exercise science that 
encourage preregistration and welcome registered reports 
represents a particularly promising development [177]. 
Beyond these efforts, curricular reforms will be necessary, 
with the goal of significantly improving statistical literacy 
at both the undergraduate and postgraduate levels. At the 
undergraduate level, courses intended to promote critical 
appraisal skills, specifically designed for consumers of 
research information (i.e., future exercise professionals), 
should be considered a necessity for a field aspiring to fully 
transition to a model of evidence-based practice. At the post-
graduate level, where most students are prospective produc-
ers of research information, the teaching of statistical skills 
should be combined with efforts to cultivate a mindset that 
welcomes openness and transparency while resisting the 
“disciplinary incentives” to “favor novelty over replication” 
(p. 615) [57]. Finally, an important issue that the extraordi-
nary claims surrounding HIIT have brought to the surface 
is that the field of exercise science must critically reexamine 
its relationship with the mass media. Researchers, univer-
sity press offices, and journal editors should also resist the 
temptation to construct and disseminate media-friendly nar-
ratives that are based on statistically questionable or fragile 
evidence.
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