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Abstract

The literature on high-intensity interval training (HIIT) contains claims that, if true, could revolutionize the science and
practice of exercise. This critical analysis examines two varieties of claims: (i) HIIT is effective in improving various indices
of fitness and health, and (ii) HIIT is as effective as more time-consuming moderate-intensity continuous exercise. Using
data from two recent systematic reviews as working examples, we show that studies in both categories exhibit considerable
weaknesses when judged through the prism of fundamental statistical principles. Predominantly, small-to-medium effects
are investigated in severely underpowered studies, thus greatly increasing the risk of both type I and type II errors of statisti-
cal inference. Studies in the first category combine the volatility of estimates associated with small samples with numerous
dependent variables analyzed without consideration of the inflation of the type I error rate. Studies in the second category
inappropriately use the p > 0.05 criterion from small studies to support claims of ‘similar’ or ‘comparable’ effects. It is
concluded that the situation in the HIIT literature is reminiscent of the research climate that led to the replication crisis in
psychology. As in psychology, this could be an opportunity to reform statistical practices in exercise science.

1 Introduction day) at least 30 min of physical activity, performed at least
at a moderate intensity, on most, but preferably all, days of
In the mid-1990s, exercise science underwent what can be the week.

characterized as the most consequential paradigmatic shift At the time, several aspects of these recommendations
in its history, expanding its focus from exercise training for ~ were criticized for their lack of specificity (e.g., what is
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aged 60 years or older registered at least 30 min of mod-
erate-intensity physical activity per day on at least 5 days
per week [9]. Less than 1% of adults registered 20 min of
vigorous-intensity activity on at least 3 days per week [10].
In the 2005-2006 NHANES, the situation was unchanged,
with only 3.2% of adults achieving the recommended dose
of moderate-intensity activity [11]. The absence of posi-
tive results from population surveys encouraged calls for
renewed emphasis on higher intensity activity [12-14].
Indeed, reformulated physical activity guidelines explicitly
offered a choice between moderate intensity (for at least
30 min on 5 days per week, or 150 min per week), vigor-
ous intensity (for at least 20—25 min on 3 days per week, or
75 min per week), or an equivalent combination [15, 16].

In 2005, in the midst of the debate preceding the refor-
mulation of the guidelines and the renewed emphasis on
vigorous-intensity activities, researchers published results
from a doctoral dissertation [17] in the Journal of Applied
Physiology. The article reported a remarkable finding,
namely that a group of two women and six men doubled
their cycling endurance performance (time to fatigue while
pedaling at 80% VOzpeak) after a total of only about 15 min
of high-intensity interval training (HIIT) over 2 weeks, with-
out changing their maximal aerobic capacity. An accom-
panying editorial [18] underscored the “effectiveness and
remarkable time efficiency” of high-intensity training but
noted that the ‘price’ participants have to pay is a need for
“a high level of motivation” and ““a feeling of severe fatigue
lasting for at least 10-20 min” (p. 1983) [18]. Over the next
several years, fueled by extensive media coverage in which
HIIT was portrayed as a solution for individuals with limited
available discretionary time, HIIT became a top trend in the
fitness industry worldwide [19]. Moreover, since 2005, HIIT
has been the subject of approximately 4000 articles, with
more than 700 new articles being added to the literature each
year, 10% of them being meta-analyses (see Fig. 1).

The data on the fitness and health benefits of HIIT have
been characterized as “clear and convincing” (p. 1231) [20].
Nevertheless, as claims about HIIT are now influencing
policy on a national and global scale (e.g., through exercise
prescription guidelines and physical activity recommenda-
tions), it would be prudent to assess whether these claims
can withstand statistical scrutiny. Steen [21] has argued that
“error and fraud are the main sources of scientific misinfor-
mation” but “error is more prevalent than fraud” (p. 501). He
insisted that “bias can also result from earnest error, statisti-
cal naiveté, or other innocent causes; not all bias is fraud” (p.
502). However, it has already been established that some of
the extraordinary claims surrounding HIIT cannot be attrib-
uted solely to earnest human error. For example, on 14 Feb-
ruary 2019, the British Journal of Sports Medicine issued a
press release promoting the publication of a meta-analysis
entitled “Is interval training the magic bullet for fat loss?”

Number of PubMed Entries
(“high-intensity interval” OR “sprint-interval”)

W O N O PO = N®T WL ON~N O D O <
© O O 90 O ¥ » v ¥ v v v > v - & N
© © 9 90 9 0 Q0 QC Q0 Q0 Q0 Q9O Q9O QO
[SVES VAR S VAN S VAR S VAR SV SR Y S SV S S VA S SV A o]

Fig.1 The number of entries per year in PubMed that include the
strings ‘high intensity interval’ or ‘sprint interval’ are shown in the
line chart. The number of meta-analyses (subsample) is shown in bars

[22], which purportedly showed that, indeed, HIIT results
in significantly larger reduction in total absolute fat mass
than moderate-intensity continuous exercise (— 2.28 kg, 95%
CI—-4.00 to—0.56, p=0.0094). The press release issued
by the journal appeared under the title “Interval training
may shed more pounds than continuous moderate intensity
workout,” and attracted the attention of major news outlets,
including the global news agency Reuters and influential
magazines like Runner’s World.! However, the meta-analysis
was later retracted because the authors could not explain
how they obtained their data (e.g., a larger reduction of body
fat by — 13.44 kg in HIIT than moderate-intensity continuous
exercise, associated with a 12-week study that reported no
relevant data).

Drawing lists of studies from two recently published
systematic reviews, the present critical analysis focuses on
statistical concerns emanating from the rapidly expanding
literature on HIIT. This analysis highlights alarming par-
allels between prevalent practices in the HIIT literature
and the emergence of a replication crisis in other scientific
fields. The narrative culminates in a call for a return to fun-
damental principles of statistics. Unlike some of the more
complicated scenarios outlined by Sainani et al. [23], the
points raised in the following sections refer to elementary

! See: (1) https:/bjsm.bmj.com/content/bjsports/suppl/2019/02/19/
bjsports-2018-099928.DC1/bjsports-2018-099928.pdf; (2) https://
www.reuters.com/article/us-health-exercise-training/interval-training-
burns-off-more-pounds-than-jogging-or-cycling-idUSKCN1Q71TT;
(3) https://www.runnersworld.com/news/a26339798/interval-training-
for-weight-loss-study/
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statistical principles, such as the mechanisms that raise the
risk of type I and type II errors of statistical inference. The
analysis culminates in a call not for the implementation of
novel, obscure, or advanced statistical methods but rather for
a return to fundamental statistical principles, along with the
readoption of the critical outlook that should, in principle,
characterize all manner of scientific inquiry.

2 Statistical Preliminaries: (Mis-)
Understanding Null-Hypothesis
Significance Testing

Studies evaluating the effectiveness of HIIT reach their
conclusions following the statistical methodology known
as null-hypothesis significance testing (NHST). Despite
strong concerns [24, 25] and the presence of alternatives
(i.e., Bayesian inference and fiducial inference) [26], NHST
has been established as the standard method for evaluating
statistical tests in most domains of human-science research,
including the exercise sciences. Despite its popularity, how-
ever, the NHST is frequently misunderstood, misapplied,
and misinterpreted [24, 25, 27].

NHST represents the amalgamation of the testing meth-
odologies proposed during the period 1915-1933 by Ron-
ald Aylmer Fisher (1890-1962) and the duo of Jerzy Ney-
man (1894-1981) and Egon Sharpe Pearson (1895-1980).
Fisher on the one hand, and Neyman and Pearson on the
other, contributed different pieces of what evolved into the
NHST methodology, but it is important to emphasize that,
as applied today, the NHST is “essentially an anonymous
hybrid” and ‘““a marriage of convenience that neither party
would have condoned” (p. 171) [28].

Fisher, who emphasized the importance of inductive rea-
soning (i.e., analyzing samples to draw inferences about the
population), is credited with the concept of the null hypoth-
esis (i.e., data demonstrating random variance) and the use
of exact p values as a quantitative measure of the ‘extreme-
ness’ of the data given the null hypothesis. By extension,
he considered p values as an indication of the plausibility
or implausibility of the null hypothesis. However, although
he famously wrote that “we shall not often be astray if we
draw a conventional line at 0.05” (p. 82) [29], for Fisher, a
low p value, such as p < 0.05, represented merely a sign that
a finding may be worthy of further study, starting with an
attempt at replication.

In the central point of contention with Fisher, Neyman
and Pearson espoused a deductive approach, in which the
null hypothesis is either rejected in favor of an alternative or
retained for further study (which is not the same as accepting
that the null hypothesis is true). Unlike Fisher, who believed
that a specific hypothesis can be tested using data from a
single study, Neyman and Pearson were not interested in

developing a method for drawing inductive inferences about
a single hypothesis based on the ‘statistical significance’
of data from a single study. Instead, their goal was to use a
deductive approach and probability theory to develop ‘rules
of behavior’ (i.e., rejection vs non-rejection of a hypothesis)
to ensure that the frequency of errors (i.e., the erroneous
rejection or non-rejection) would be kept below an accept-
ably low limit over a series of many studies:

But we may look at the purpose of tests from another
view-point. Without hoping to know whether each
separate hypothesis is true or false, we may search
for rules to govern our behaviour with regard to them,
in following which we insure that, in the long run of
experience, we shall not be too often wrong. Here,
for example, would be such a “rule of behaviour”:
to decide whether a hypothesis, H, of a given type be
rejected or not, calculate a specified character, x, of
the observed facts; if x > x, reject H, if x < x, accept
H. Such a rule tells us nothing as to whether in a par-
ticular case H is true when x < x, or false when x > x,.
But it may often be proved that if we behave according
to such a rule, then in the long run we shall reject H
when it is true not more, say, than once in a hundred
times, and in addition we may have evidence that we
shall reject H sufficiently often when it is false (p. 291)
[30].

The Neyman-Pearson approach, therefore, implied two
types of errors, called type I and type II, with the rate of
those errors symbolized by the Greek letters o and B, respec-
tively, as well as the concept of statistical power, symbolized
as 1-p [31]. A type I error (o) occurs when “if we reject Hy,
we may reject it when it is true,” whereas a type Il error ()
occurs when “if we accept H;, we may be accepting it when
it is false, that is to say, when really some alternative is true”
(p- 296) [30]. Statistical power (1-p) is defined as “the prob-
ability of rejecting the hypothesis tested, H,, when the true
hypothesis is H;” (p. 498) [32].

Fisher [33] concurred with the notion of type I errors and
was keenly aware of the risk of raising the rate of such errors
as a result of performing a multitude of tests. For example, he
argued that a comparison between two extreme values “picked
out from the results, will often appear to be significant, even
from undifferentiated material” (p. 66). His proposed remedy
was analogous to alpha-splitting, namely making the criterion
for evaluating the p value more stringent: “We might, there-
fore, require the probability of the observed difference to be as
small as 1 in 900, instead of 1 in 20, before attaching statistical
significance to the contrast” (p. 66). On the other hand, argu-
ing from an inductive standpoint, Fisher rejected the notion of
type II errors because he believed that scientific research is a
process of “learning by experience” and, in such a process, a
priori knowledge is “almost always absent or negligible” (p.
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73) [34]. Thus, although he considered the rate of type I error
“calculable, and therefore controllable,” he insisted that type
II error is “incalculable both in frequency and in magnitude”
(p. 73).

Interestingly, while Fisher rejected the notion of type II
error, he was aware of the importance of statistical power
(although he used the term ‘sensitivity’ or ‘sensitiveness’)
and the role of sample size and a higher number of repeti-
tions in increasing statistical power: “By increasing the size
of the experiment, we can render it more sensitive, meaning
by this that it will allow of the detection of a lower degree of
sensory discrimination, or, in other words, of a quantitatively
smaller departure from the null hypothesis” (p. 25) [33]. Com-
mentators have noted that “Fisher’s ‘sensitivity’ and Neyman-
Pearson’s ‘power’ refer to the same concept” (p. 173) [28], but
Fisher “denied the possibility of assessing it quantitatively”
(p. 1245) [35].

The main misinterpretations surrounding the NHST
emerged following the merger of the Fisher and Neyman-Pear-
son approaches by anonymous researchers [35, 36], a merger
“that neither party would have condoned,” to repeat the phrase
of Hubbard and Bayarri (p. 171) [28]. This anonymous and
unsanctioned merger has resulted in several persistent misuses
and misinterpretations that have plagued research for decades
[24, 37, 38]. Of these, the following problems are arguably
most relevant to research on HIIT.

2.1 The p Value as an Indication of the Plausibility
of the Null Hypothesis

First, there is a widespread but mistaken belief that a p value
of 0.05 means that there is only 5% probability of the null
hypothesis being true (or, conversely, for 1-p, that there is
95% probability that the null hypothesis is false). This belief
is mistaken because p values are calculated from the data
under the assumption that the null hypothesis is true [39]. A
p value merely indicates the probability (assuming that the
null hypothesis is true) of observing a test statistic (e.g., a ¢
value) as extreme or more extreme than the value observed
in the present sample. This can be expressed as Pr(datalH,)
in probability notation. This statement is not equivalent to
the interpretation that a p value of 0.05 means that there is
only 5% probability of the null hypothesis being true, namely
Pr(Hyldata). While the p value does provide some indication
of the plausibility or implausibility of the null hypothesis, a
p near 0.05 "greatly overstates the evidence against the null
hypothesis" (p. 139) [37]. Berger and Sellke [40] calculated
that the lower bound of Pr(Hldata) can be estimated as:

Pr(Hy|data) = (1 + (1 +n)2exp{F2/[2(1 + 1/m)] })~

Using a ¢ value that yields p=0.05 (t=1.96) and a sam-
ple size of n =50 per group results in Pr(Hyldata) =0.52,
which surpasses p =0.05 by more than an order of mag-
nitude [40, 41].

2.2 The pValue as an Index of the Risk of Type |
Errors

Second, related to the previous point, there is pervasive
confusion between a p value, namely the probability of
obtaining a test statistic at least as extreme as that obtained
from a given study under the assumption that the null
hypothesis is true, and a, namely the rate of type I errors
[28]. In actuality, a single number (i.e., a p value) cannot
simultaneously serve the dual function of providing an
indication of the ‘extremeness’ of the data from any given
study and, at the same time, an indication of the ‘long-
run’ frequency of improperly rejecting the null hypothesis
when it is true [39]. Nevertheless, statisticians [40—-42]
have estimated that, at least for the range p < 1/e, where
e is Euler's constant (2.71828), namely p < 0.36787, the
lower bound of « (i.e., the minimum risk of a type I error
when rejecting the null hypothesis) can be estimated by:

a(p) = (1 + [—eplog(p)]_l>_1

where log(p) is the natural logarithm of the p value. Sub-
stituting p=0.05 yields a=0.289. This means that there is
at least 28.9% probability of a type I error when rejecting
the null hypothesis on the basis of a p value close to 0.05.
In other words, at least 28.9% of p values near 0.05 can be
expected to come from studies in which the null hypothesis
1S true.

2.3 The p Value as an Index of Replicability

Third, researchers often mistakenly assume that a low p
value (e.g., p <0.05) entails that, if the same test were
performed on a different sample randomly drawn from
the same population (e.g., same sample sizes, same treat-
ments), there would be high probability (e.g.,>95%) that
the new p value would be similarly low (e.g., p <0.05)
[43]. In fact, except in studies with levels of statistical
power over 90%, p values are characterized by extraordi-
nary uncertainty [44, 45]. Thus, for a comparison between
two means resulting in p < 0.05, the probability of finding
p <0.05 in a (theoretical) ‘identical’ replication (with the
difference between the means being in the same direction)
has been estimated as only 50% [46-49].
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2.4 A Non-Significant p Value As a Basis
for Accepting the Null Hypothesis

Fourth, a widely prevalent and persistent misunderstanding
is that obtaining a nonsignificant test result (e.g., p > 0.05)
can be interpreted as an indication that the null hypothesis
(e.g., b} —p,=0) is true or as indication of the absence of
an effect [24, 37, 38, 50-52]. Fisher [33] famously asserted
that “the null hypothesis is never proved or established, but
is possibly disproved, in the course of experimentation” (p.
19). Accordingly, one of the oft-quoted admonitions of stat-
isticians is that “the absence of evidence is not the same as
evidence of absence” [53, 54]. A non-significant p value
cannot provide a basis for accepting the null hypothesis as
true or for the rejection of alternatives. It only suggests that
a null effect is statistically consistent (or not inconsistent)
with the data, along with the range of other effects encom-
passed within the confidence interval. However, p > 0.05
provides no indication that the null effect, specifically, is the
most likely among these. Moreover, using non-significant p
values as an indication in support of the null hypothesis is
especially precarious in scientific fields, such as the exer-
cise sciences [55], that are characterized by a preponderance
of underpowered studies. Authors have warned that “null
results are surprisingly easy to obtain by mere statistical
artefacts; simply using a small sample or a noisy measure
can suffice to produce a false negative” (p. 97) [56].

Collectively, the aforementioned misinterpretations sug-
gest that NHST is a potentially useful, but delicate, test
methodology. As such, it should be approached cautiously,
recognizing and respecting its considerable limitations. The
wide prevalence of the misinterpretations and misuses of the
NHST across many domains of scientific research cannot be
deemed a valid excuse for their ubiquity within the field of
exercise science in general and research on HIIT in particu-
lar. Likewise, the fact that prestigious journals within the
field of exercise science have permitted such practices does
not render them any less egregious or harmful.

While there is ongoing debate about the causes and poten-
tial remedies of these misinterpretations and misuses of the
NHST [57], many statistical experts see these misinterpre-
tations and misuses as contributors to the phenomenon of
non-replicable research [58—61]. Whether implemented
deliberately or inadvertently, questionable statistical prac-
tices can result in intriguing, albeit fanciful, findings, with a
high probability of attracting the attention of other research-
ers and the public. Serra-Garcia and Gneezy [62] speculated
that, when evaluating manuscripts, journal editors and peer
reviewers probably weigh two considerations against each
other, namely the likely robustness or reliability of the result
on one hand and its interest or curiosity on the other: “when
the paper is more interesting, the review team may apply
lower standards regarding its reproducibility” (p. 4).

3 Misuses of Null-Hypothesis Significance
Testing in Research on HIIT

The following two sections present critical commentar-
ies on two major variants of claims pertaining to HIIT,
namely (i) that HIIT is effective in improving a variety of
fitness and health outcomes, and (ii) that HIIT is as effec-
tive as more time-consuming moderate-intensity continu-
ous exercise. We examine studies contained in two recent
systematic reviews to demonstrate that deviating from
elementary statistical principles can result in data that
can be portrayed as supporting both of these conclusions,
but with a high probability that such conclusions reflect
errors of statistical inference. It is important to reiterate
that the problems to be discussed are certainly not unique
to the HIIT literature but have long plagued the broader
exercise-science literature [63].

3.1 The'ls Effective’ Problem

As evidenced in meta-analyses [64, 65], a striking feature of
the research literature on HIIT is an abundance of implau-
sibly large effect sizes (e.g., standardized mean differences
over 2.0 or 2.5 standard deviations) reportedly demonstrat-
ing the extraordinary effectiveness of HIIT compared with
control conditions or even compared with active interven-
tions consisting of moderate-intensity continuous exercise
training. Some of these can be dismissed as mistakes, such
as standardized mean differences (Hedges’ g) of 11, 16, or
29 standard deviations [64], which can be readily attributed
to computational errors (e.g., mistaking standard errors of
the mean as standard deviations). Other cases, however, may
be more complicated. For example, a remarkable standard-
ized mean difference in maximal oxygen consumption of
4.59 standard deviations [65] from a 12-week comparison
between HIIT and moderate-intensity continuous exercise
[66] could be due to a host of well-established but frequently
overlooked sources of methodological bias. These include,
but are not limited to, the inadequate concealment of the ran-
domization sequence, the absence of intention-to-treat analy-
ses, and the use of unblinded outcome assessors. In addition,
exercise researchers are aware of the biasing effect of sev-
eral exercise-specific factors, such as the lack of control for
verbal encouragement during tests of maximal performance
[67-69]. When exercise testing is conducted by research-
ers who are ardent proponents of HIIT (e.g., “HIIT should
play a central role in health activity guidelines” because it
can “maximize the benefits of physical activity globally,” p.
5216) [70], and are unblinded to treatment allocation, find-
ing a standardized mean difference of 4.59 standard devia-
tions in favor of HIIT becomes a plausible occurrence.
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Such methodological sources of bias are beyond the
scope of the present analysis. Here, we focus on statistical
mechanisms that can produce similarly extraordinary (and
likely non-replicable) results. For example, meta-analy-
ses have reported that HIIT interventions have produced
standardized mean differences that exceeded 2.5 standard
deviations [71, 72]. Closer inspection of the characteris-
tics of the studies that produced these large effect sizes
[73-75] reveals certain notable commonalities: (i) small
sample sizes (e.g., 10-20 participants per group), resulting
in wide confidence intervals and low statistical power to
detect even large effects, (ii) long lists of dependent vari-
ables, covering several multidimensional domains (e.g.,
anthropometric characteristics, inflammatory or immune
markers, indices of cardiac, vascular, cardiorespiratory, or
metabolic function), (iii) absence of pre-registration that
could have allayed concerns about selective reporting, (iv)
absence of designation of dependent variables as primary
versus secondary, and (v) numerous statistical tests, each
evaluated with the criterion of p <0.05. Because of sam-
pling variability and the lack of precision associated with
small samples, estimates of population values (means,
standard deviations) and, therefore, the associated p values
“dance around” (p. 1720), as Gandevia [76] put it. Given a
long enough list of dependent variables, it becomes almost
inevitable that some means will happen to show exagger-
ated differences, thus resulting in extraordinarily large
effect sizes. With a lax criterion such as p <0.05, one or
more comparisons will cross the threshold of ‘statistical
significance,” increasing the likelihood of publication. A
cynic might argue that this approach could be used, delib-
erately or unwittingly, as a recipe for producing seemingly
‘significant’ and possibly novel or intriguing results, albeit
results that are probably non-reproducible.

These basic statistical mechanics are explained in under-
graduate and postgraduate university courses on research
methodology. It is, therefore, surprising and disheartening
that studies with the aforementioned characteristics, and
attendant risk of producing untenable results, continue to be
commonplace in large sections of exercise-science research
[77], including research on HIIT.

Nosek et al. [57] criticized the “disciplinary incentives”
that tend to “inflate the rate of false effects in published sci-
ence” and “favor novelty over replication” (p. 615). In the
following sections, we elaborate on several aspects of this
problem.

3.1.1 Multiplicity

Methodologically strong studies, including most well-
designed randomized controlled trials, have one outcome
variable designated as ‘primary’ and, accordingly, test one
main hypothesis, typically using the criterion of p <0.05.

Moreover, methodologically strong studies are pre-regis-
tered, which eliminates concerns about outcome switching
(i.e., replacing the primary outcome of interest if it did not
reach statistical significance with a different one that did) or
selective reporting (i.e., only reporting the outcome that hap-
pened to reach the threshold of statistical significance out of
a larger set of tested outcomes). However, in several domains
of research, including studies investigating the effects of
HIIT, pre-registration remains rare, and researchers report
results pertaining to numerous dependent variables, each
tested using the criterion of p < 0.05. This scenario is prob-
lematic insofar as it can raise the risk of type I errors (or
‘false positives’), namely rejecting the null hypothesis when
itis true.

Besides pre-registration, it is important for the tested
hypotheses to be precise (e.g., “it is hypothesized that HIIT
will improve outcome X as measured by test Y because of
reason Z”). Instead, in the HIIT literature, studies often
claim to have demonstrated the ‘effectiveness’ of HIIT rela-
tive to control treatments or relative to moderate-intensity
continuous exercise (despite a smaller time commitment)
by testing imprecise hypotheses that refer to broad concepts
(e.g., cardiorespiratory fitness, endurance performance, mus-
cle enzymes, blood pressure, glucose metabolism, inflam-
matory parameters, cardiometabolic health). In turn, each of
these broad concepts is assessed by several variables (e.g.,
long lists of different indicators of cardiorespiratory fitness,
endurance performance, muscle enzymes, and so on). If
researchers explicitly follow a ‘conjunction’ approach [78],
they need to reject all the constituent null hypotheses (e.g.,
one for each of the multiple inflammatory parameters) in
order to claim that they rejected the joint null hypothesis
(i.e., that HIIT has a stronger anti-inflammatory effect, in
general, than moderate-intensity continuous exercise). The
conjunction approach, because of the nature of the joint
null hypothesis (i.e., all constituent tests must be signifi-
cant), gives researchers only a single opportunity to reject
the joint null hypothesis at the prespecified level of a (i.e.,
5%) and, therefore, despite entailing multiple tests, it does
not raise the overall risk of a type I error. On the other hand,
the conjunction approach is characterized by low statisti-
cal power because researchers would fail to reject the joint
null hypothesis if even one of the constituent tests yields a
non-significant result. The low statistical power is the likely
reason why the conjunction approach is rarely encountered
in the research literature.

In contrast, in the ‘disjunction’ approach, it is only nec-
essary to reject one of multiple constituent null hypoth-
eses in order for researchers to be able to claim that they
have rejected the joint null hypothesis [78]. For exam-
ple, researchers may conclude that HIIT benefits muscle
enzymes (or cardiometabolic health or arterial stiffness or
cytokines) if only one or two of the variables that make up
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this broad category, out of a larger set of tested variables,
showed significant results in the expected direction. Conse-
quently, the disjunction approach increases the risk of type
I error because researchers have multiple opportunities to
incorrectly reject the joint null hypothesis (i.e., each test of
a constituent null hypothesis is also an opportunity to reject
the joint null hypothesis).

For two independent events, the probability of observing
both of these events together is given by the product of their
(separate) probabilities. Therefore, if the probability of mak-
ing a type I error is a=0.05, the probability of not making
atype I error (i.e., erroneously rejecting the null hypothesis
when it is true) on two independent simultaneous tests would
be given by (1 —a)x (1 —a)=(1—a)*=(1-0.05)>=0.9025.
Conversely, the probability of making a type I error would be
given by 1 — (1 —a)?=1-0.9025=0.0975. Therefore, more
broadly, the formula for the inflation of the type I error rate
due to conducting multiple independent probability tests,
often referred to as the Sidak equation, is a*=1—(1— (x)M ,
where o* is the inflated value of « as a result of conducting
multiple independent tests, a is the conventionally defined
probability of committing a type I error (typically, « =0.05),
and M is the number of independent probability tests con-
ducted at the level of a [79-81].

Applying this formula, one finds, for example, that con-
ducting 14 independent tests following the disjunction
approach results in «=0.51, namely > 10 times the nominal
rate of 0.05. This means that, if 14 independent tests were to
be conducted, one should expect the probability of making at
least one type I error to be > 0.50. According to a statistical
textbook: “It is especially important to realize that failing to
control for multiple testing may play a major role in contrib-
uting to a disappointing failure rate in attempts to replicate
published studies” (p. 216) [82].

As noted, the aforementioned formula relies on the sim-
plifying assumption that the multiple probability tests are
independent of each other. This assumption, however, is
usually false in practice since, in a common example, sev-
eral variables within the same data set may examine various
facets of the same phenomenon (e.g., different parameters
of glucose metabolism, immune function, or health-related
quality of life), and will, therefore, probably be intercor-
related. To account for this dependence, researchers have
proposed variations of the Sidak equation [83-86]. For
example, an approach that originated in the field of genetics
[87, 88] suggests that, when conducting 14 tests, instead of
a rising to 0.51 when the tests are independent, o would rise
t0 0.48, 0.42, and 0.32 when the variables are intercorrelated
r=0.30, r=0.50, and r=0.70, respectively. Thus, while the
formula o* =1 — (1 — )" represents only the ‘worst-case
scenario,’ it is nevertheless a useful reminder of the pos-
sible deleterious consequences of conducting multiple tests
without consideration of the inflation of the type I error rate.

With pre-registration still being a rarity in exercise sci-
ence [63], there is no guarantee that the dependent variables
listed in an article represent a complete accounting of all
the variables measured or analyzed. Even with this caveat
in mind, it is common in the HIIT literature to encounter
studies that follow the disjunction approach, hypothesizing
joint null hypotheses, each consisting of numerous constitu-
ent tests, each tested at p <0.05 [89-92]. This practice can
increase the risk of type I error to high levels (see Fig. 2),
even compared with other research within exercise science
[55], thus raising serious concerns about the validity and
reproducibility of any reported effects.

3.1.2 Sampling Variability and the Instability of p Values

To compound the problem of multiplicity described in the
previous section, the samples used in the HIIT literature
tend to be small (e.g., with as few as five individuals per
group). The combination of long lists of dependent vari-
ables and small samples creates a statistical ‘perfect storm,’
a recipe for non-replicable science [43, 44, 46, 93]. Due
to sampling variability, small samples produce highly vola-
tile and imprecise estimates of the ‘true’ population values
(e.g., means, standard deviations, intermean differences, and
p values). The combination of instability and imprecision
with an extremely lax criterion for determining ‘statistical
significance,” given a large enough number of tests, essen-
tially guarantees two outcomes: (i) at least some of the tests
will cross the liberal threshold of ‘statistical significance’
and (ii) these findings will have a high likelihood of being
non-replicable in different samples.

The small samples have occasionally been justified on
the basis of the argument that the studies are ‘pilot’ trials
that were “not designed to be powered to detect statistically
significant differences in small or moderate effects” (p.
2072) [94]. Instead, their purpose is portrayed as estimat-
ing “the magnitude of effect to lay the foundation for a fully
powered efficacy trial” (p. 2072). It should be emphasized,
however, that this rationale, although commonly encoun-
tered, is flawed, due to the inability of small-sample studies
to accurately estimate population parameters [95, 96]. This
lack of precision can lead to considerable over- or under-
estimations of the true effect size, with potentially devastat-
ing consequences for the design of subsequent larger trials.

As noted earlier (Sect. 2), although some researchers
operate under the assumption that a finding of p <0.05
entails 95% confidence that the same result would re-occur
in a subsequent replication study, this is not the case. This
misconception has been termed the ‘replication fallacy’ or
‘replication delusion’ [61]. In actuality, following an initial
finding of p <0.05, a subsequent (hypothetical) ‘perfect’ rep-
lication study drawing an equal number of participants from
the same population has only about 50% chance of resulting
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in a finding of p <0.05 with the intergroup difference in
the same direction [43]. Based on an empirical analysis of
45,955 observed effects derived from the Cochrane Database
of Systematic Reviews, van Zwet and Goodman [97] put
the estimate considerably lower, at 29%. Many researchers
may find these figures surprising, despite numerous relevant
warnings having been issued in applied literatures, including
in psychology [46], physiology [76, 98, 99], medicine [93,
100], and pharmacology [101].

In an effort to understand the implications of p values
for replication, statisticians have been analyzing the behav-
ior of p values under various conditions, including differ-
ent hypothetical population effect sizes, the level of a, and
sample size [43, 102—-105]. These efforts have resulted in
formulas that enable researchers to calculate the probability
of obtaining statistically significant results (e.g., p <0.05)
in subsequent replication studies [46]. One realization that
has emerged from these investigations is that sampling vari-
ability renders p values extremely unstable and, therefore,
an unreliable basis for drawing inferences about experimen-
tal effects in most applied-research contexts (given typical
effect sizes and sample sizes), especially inferences regard-
ing the replicability of findings [44, 46, 106].

To illustrate the implications for the HIIT literature, we
examined the 48-study database used in a meta-analysis by
Mattioni Maturana et al. [65], which concluded that HIIT
“was superior to [moderate-intensity continuous training]
in improving VO,,,,.” (p. 559). In this meta-analysis, the
median sample size was N=10 per group, and the pooled
effect size for VO,,,,, (i.e., the most extensively studied
outcome) in comparison to moderate-intensity continuous

Number of tests, each using the p < .05 criterion

training was d=0.40. Assuming that the pooled effect size
approximates the ‘true’ population effect size 9, the com-
bination of these two numbers results in a noncentrality
parameter z=351/(N/2) =0.401/(10/2) = 0.894, which cor-
responds to an expected p value of 0.371 (the observed mean
p value was slightly lower, at 0.323, for reasons that will be
explained in Sect. 3.1.4).

Under these conditions (N=10 per group, a=0.05,
6=0.40), statistical power (1-$) is only 0.14 (i.e., 14% of p
values are expected to be below 0.05), much lower than the
0.80 conventionally considered adequate. As shown in Fig. 3,
while 80% of the studies with 1-=0.81 will yield p values of
0.047 or less, 80% of the studies with 1-=0.14 will yield p
values of 0.707 or less (which also means that 20% of studies
will yield p values higher than 0.707). Indeed, 39 of the 48 p
values (81.25%) associated with the studies in the meta-anal-
ysis by Mattioni Maturana et al. [65] were lower than 0.707,
whereas 9 of 48 (18.75%) were larger than 0.707.

As a demonstration of the volatility of p values one can
expect from this combination of effect sizes and sample
sizes, Fig. 4 shows that the 48 p values related to VO,
[65] covered the range from p=0.00000004 to p =1.000,
and effect sizes exhibited an astounding range of 5.33 stand-
ard deviations, from — 0.74 to +4.59. In other words, assum-
ing that the effect size of the phenomenon under investiga-
tion is in the range between small and medium, attempting
to study it with approximately 10 participants per group can
lead to any outcome [46].

Moreover, as noted earlier and illustrated in Fig. 5
and Table 1, if an initial study yields p <0.05, there is a
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Fig. 3 The probability distribution of two-tailed p for three hypotheti-
cal studies: i an adequately powered study, with population effect size
6=0.5 and N=64 per group (1 —f=0.81), ii the example shown by
Cumming [46] (p. 289), with population effect size §=0.5 and N=32
per group (1 —f$=0.52), and iii an example consistent with the stud-
ies included in the meta-analysis by Mattioni Maturana et al. [65],
with population effect size §=0.4 and N=10 per group (1 —$=0.14).

50% chance that a subsequent replication will also yield
p <0.05, regardless of whether the population effect size
is assumed to be ‘known’ or ‘unknown.” However, if the
initial study yields a p value of 0.371 (i.e., the p value
expected from studies with the characteristics of those
in the meta-analysis by Mattioni Maturana et al. [65]),
the probability that a subsequent replication would yield
p <0.05 is only 14.6%. In other words, 85.4% of direct and
exact replications (i.e., without any changes to research
protocols, including sample size) would likely yield
p>0.05. Moreover, as noted by Cumming [46] and shown
in Table 1, to have 90% confidence that a replication would

The 80th percentiles indicate that 80% of the area under each curve
(the probability of two-tail p values) lies to the left of the marker and
the figure indicated is the upper limit of the 80% percentile p interval
(with a lower limit of zero). The probabilities associated with conven-
tional intervals of p (i.e., 0.05, 0.01, 0.001) are shown as percentages
in the histograms

yield p <0.05, the initial study would have to produce
p <0.00054.

As shown in Table 2 and Fig. 6, the p intervals are
extremely wide. The two-sided p interval, from the 10th to
the 90th percentile, extends from 0.006 to 0.828, whereas
the one-sided p interval from zero to the 80th percentile
extends to 0.662. This means that 80% of replication two-
tail p values would fall between 0.006 and 0.828 or between
0.000 and 0.662. Indeed, 85.42% of the two-tail p values
associated with the studies in the meta-analysis by Mattioni
Maturana et al. [65] were between 0.006 and 0.828, and
79.17% were between 0.000 and 0.662. For comparison (see
Table 2), in a hypothetical literature in which one can expect
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Fig.4 The p values associated with the 48 studies comparing maxi-
mum oxygen consumption (VO,,,.) between high intensity interval
training (HIIT) and moderate-intensity continuous exercise groups
that were included in the meta-analysis by Mattioni Maturana et al.
[65], illustrating the range from 0.000 to 1.000

a study to yield p=0.001, the two-sided p interval for a rep-
lication study, from the 10th to the 90th percentile, extends
from 0.0000005 to 0.139, whereas the one-sided p interval
from zero to the 80th percentile extends to 0.036 (or to 0.018
in the case of a one-tail test).

3.1.3 Positive Predictive Value and False Positive Risk

Positive predictive value (PPV) is defined as the probability
that a ‘positive’ research finding (e.g., p <0.05) represents a
true effect (i.e., that the finding is a true positive). PPV can
be estimated by the formula [107, 108]:

d-pR

PPV =— """
(1-pR+a

where 1 — f is statistical power, R indicates the prestudy
odds (i.e., the odds that an effect is indeed non-null prior to
the study being conducted, based on prior evidence), and o
is the probability of a type I error. Although R is difficult to
estimate, the highest value one can reasonably assume when
there are no prior studies on a given topic is 50% (i.e., a
50-50 chance). Even in the unrealistic scenario of R=0.50,
using the above formula shows, for example, that conducting
19, 23, 32, or 41 independent tests in underpowered studies

Fig.5 Probability (y axis) that a hypothetical ‘perfect’ replication
study (i.e., drawing samples of equal size from the same popula-
tion as the original, and applying identical treatment and assess-
ment methods) would obtain p <0.05, as a function of the p value
obtained in the original study (under two assumptions: that the popu-
lation effect size is known, and equal to the effect size obtained in
the initial study, or not). It can be seen that if the initial study yielded
p<0.05, there is only a 50% chance that a replication would also
obtain p <0.05. If the initial study yielded p=0.371 (i.e., the p value
expected from studies with the characteristics of those included in the
meta-analysis by Mattioni Maturana et al. [65], given §=0.40 and
N=10 per group), the probability of obtaining p <0.05 from a repli-
cation would be only 0.15 and 0.25, respectively

(e.g., 1-=0.14) will result in only 7-10% probability of a
true positive (see Fig. 7). Under the more realistic scenarios
of 1-in-4 or 1-in-5 odds (i.e., R=0.25 or 0.20), the prob-
ability of a true positive drops to 3-5%.

As noted in the previous section, in the meta-analysis by
Mattioni Maturana et al. [65], the median sample size was
10 per group (the mean was 13.2) and the pooled effect
was d=0.40. As shown in Fig. 8, assuming that this effect
size approximates the ‘true’ population effect (although
this is likely an overestimate for reasons explained in
Sect. 3.1.5), the median study exhibited only 14% statisti-
cal power (the mean of 16% was slightly higher due to
one study with 75% power). This level of power is even
lower than the median power of 21% highlighted as under-
mining the reliability of neuroscience [107]. Researchers
have found that between 43 and 57% of studies in differ-
ent domains of biomedicine have statistical power in the
0-20% range [109]. Of the 48 studies on VO,,,,, included
in the Mattioni Maturana et al. [65] meta-analysis, consid-
ering the pooled effect size of d=0.40 as the effect size
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Table 1 Probability of obtaining p < 0.05 from a replication as a
function of the p value obtained in an initial experiment (p obt) under
two assumptions (i.e., that the population effect size is known, and
equal to the effect size obtained in the initial study, or not). The col-
umn labeled "Goodman" contains the values calculated by Goodman

[43] (Table 1, p. 877), presented here as evidence of validation. The
p value of 0.371 (i.e., the expected p value from the meta-analysis by
Mattioni Maturana et al. [65], given 6 = 0.40 and N = 10 per group)
is also included, to highlight the low probabilities of obtaining p <
0.05 from a replication study

p obt Assuming ¢ is known (6 = d) Assuming § is unknown

2-tail Goodman 1-tail 2-tail Goodman 1-tail
0.001 0.908 0.91 0.950 0.827 0.78 0.878
0.005 0.802 0.80 0.877 0.726 0.71 0.794
0.010 0.731 0.73 0.824 0.669 0.66 0.745
0.030 0.583 0.58 0.700 0.561 0.56 0.645
0.050 0.500 0.50 0.624 0.503 0.50 0.588
0.100 0.376 0.37 0.500 0.417 0.41 0.500
0.200 0.249 0.358 0.327 0.399
0.371 0.146 0.227 0.247 0.298
0.400 0.134 0.211 0.238 0.285
0.600 0.082 0.131 0.195 0.214

Table2 Two-sided (extending from the 10th to the 90th percentile)
and one-sided (extending from zero to the 80th percentile) p inter-
vals for two- and one-tail single-study replications as a function of
the p value obtained in an initial (two-tail) study (p obt). P intervals
indicate the probability of obtaining p < 0.05 in a single, identical
replication study. Compare to the values calculated by Cumming [46]

(Table 1, p. 292) for validation. As noted by Cumming [46], "for the
90% p interval [one-tail] to be [0, 0.05], p obt must equal 0.00054"
(p- 293). The p value of 0.371 (i.e., the expected p value from the
studies included in the meta-analysis by Mattioni Maturana et al.
[65], given 6 = 0.40 and N = 10 per group) is also included, to high-
light the extraordinarily wide p interval associated with it

p obt 10-90th percentile interval, 10-90th percentile interval, 0-80th percentile interval, 0-80th percen-
two-tail one-tail two-tail tile interval,
one-tail
0.00054 [0.0000005, 0.099] [0.0000001, 0.050] [0.000, 0.023] [0.000, 0.011]
0.001 [0.0000005, 0.139] [0.0000005, 0.070] [0.000, 0.036] [0.000, 0.018]
0.010 [0.000012, 0.408] [0.000006, 0.223] [0.000, 0.162] [0.000, 0.083]
0.020 [0.000035, 0.517] [0.000018, 0.304] [0.000, 0.242] [0.000, 0.128]
0.050 [0.000162, 0.648] [0.000081, 0.441] [0.000, 0.379] [0.000, 0.221]
0.100 [0.000544, 0.728] [0.000273, 0.567] [0.000, 0.491] [0.000, 0.325]
0.200 [0.001924, 0.789] [0.000988, 0.702] [0.000, 0.591] [0.000, 0.464]
0.371 [0.005998, 0.828] [0.003397, 0.821] [0.000, 0.662] [0.000, 0.616]
0.400 [0.006848, 0.832] [0.003978, 0.834] [0.000, 0.669] [0.000, 0.636]
0.600 [0.013091, 0.849] [0.009726, 0.901] [0.000, 0.701] [0.000, 0.747]

of interest, 42 (88%) had statistical power in the 0-20%
range and all but one (47 of 48, or 98%) were in the 0-33%
range. The combination of the type I error rate () being
allowed to escalate and the extraordinarily small (i.e.,
severely underpowered) studies can easily (i.e., in com-
mon, entirely realistic scenarios) lead to false discovery
rates that approach 100%.

A complementary way to think of this problem is in terms
of the false positive risk (FPR), namely the probability that a
‘significant’ result (e.g., p <0.05) represents a false positive.
The FPR can be estimated by the formula [60]:

FPR = pd R
p1-R)+(1-p)R

where p is the p value of a study, R indicates the prestudy odds
(i.e., the odds that an effect is indeed non-null prior to the
study being conducted, based on prior evidence), and 1 —f is
the statistical power of the study. The FPR is related to efforts
[40-42], reviewed in Sect. 2, to associate the p value from a
single study to the lower bound of the long-run risk of type
I error (o). Applying the formula to the studies on VO,, ..
that were included in the Mattioni Maturana et al. [65] meta-
analysis, and assuming that R=0.50, shows that only three



1876

P. Ekkekakis et al.

00
90

wotal 83
80 82

~
o

D
o

~
o

w
o

N
o

-
o

o
o

Two-sided p interval (101-90" percentile) for replication
(assuming unknown population effect size and sample size)
o

o
S

05 .10 15 20 25 30 .35 40
Two-tail p value obtained in original study

Fig.6 p intervals estimated to indicate the probability of obtaining
p<0.05 in a replication study as a function of the (two-tail) p value
in an initial study. The two-sided p intervals, extending from the 10th
to the 90th percentile, are shown on the left, whereas the one-sided
p intervals, extending from zero to the 80th percentile, are shown on
the right. Estimates are shown for both two-tail and one-tail tests in

of the 48 studies produced FPR lower than 0.05 (see Fig. 9).
Given their low level of statistical power (median 0.155, mean
0.169), even under the unrealistic assumption of R=0.50, the
FPR of the 13 studies that produced p <0.05 was as high as
0.245, with a mean of 0.130 and a median of 0.123 (recall
that the risk of type I error associated with p=0.05 has been
estimated as at least 0.289).

3.1.4 Excess of ‘Significant’ Results

Assuming that the null hypothesis is false (e.g., that there is
a difference between HIIT and moderate-intensity continu-
ous training in terms of improving VO,,.. ), and the effect
size is 6=0.40, samples of 10 per group are expected to
reject the false null hypothesis in only 14% of the cases (i.e.,
statistical power of 14%). Instead, as shown in Fig. 10, 13
of the 48 studies (27.1%) included in the meta-analysis by
Mattioni Maturana et al. [65], nearly double the expected
rate, produced results with p <0.05.

This rate indicates an ‘excess of significant findings’
according to the test proposed by loannidis and Trikalinos
[110]. This is a X2 statistic calculated as:

A=[(0-E}/E+(0-E)/(n-E)]

1.00

.90

.80

One-sided p interval (0-80t" percentile) for replication
(assuming unknown population effect size and sample size)

.00 05 10 15 20 25 .30 .35 .40
Two-tail p value obtained in original study

the replication study. The upper limits of the 90th percentile (left)
and 80th percentile (right) p intervals associated with an initial study
yielding p=0.371 (i.e., the p value expected from studies with the
characteristics of those included in the meta-analysis by Mattioni
Maturana et al. [65], given §=0.40 and N=10 per group) are high-
lighted

where O is the number of studies reporting ‘statistically
significant’ results (p <0.05), E is the sum of the levels of
statistical power in all the studies in the sample to detect
the population effect size (assumed here to equal the pooled
effect size from the meta-analysis, namely d=0.40), and n
is the number of studies in the sample. For the studies in the
meta-analysis by Mattioni Maturana et al. [65], E is 7.851,
0O =13, and n=48. Therefore, Xz(l) =4.038, p=0.044, indi-
cating the presence of an excessive proportion of ‘statisti-
cally significant’ results.

Various mechanisms may account for this phenom-
enon [111]. One category includes ‘researcher degrees of
freedom’ [112], some of which may be questionable (e.g.,
‘p-hacking,” selective outcome reporting, selective removal
of data points, failing to account for multiplicity) and some
of which may reflect publication bias (e.g., the ‘file drawer’
problem, namely the low probability of studies reporting
non-significant results being accepted for publication) [113].

3.1.5 ‘Winner's Curse’

An additional problem, named ‘winner’s curse’ [114, 115],
emerges from underpowered studies. The ‘winner’s curse’
refers to the fact that, when an underpowered study hap-
pens to correctly reject a null hypothesis, the estimate of
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Fig. 7 Positive predictive value (PPV), namely the probability that a
‘positive’ research finding represents a true effect (i.e., that the find-
ing is a true positive), as a function of the type I error rate («), when
statistical power (1 —p) is sufficient (i.e., 1 —f=0.80) and when it is
the median of the power of studies included in the meta-analysis by
Mattioni Maturana et al. [65] comparing high intensity interval train-
ing (HIIT) and moderate-intensity continuous training on maximum
oxygen consumption (VO,,..) (i.e., 1 —==0.14). When « is allowed
to escalate to high levels, even under the unrealistic scenario of
R=0.50, the PPV drops to <0.10

1.0

0.9
Level of statistical power (.80) conventionally considered sufficient

0.8
o
0.7

0.40, given a = .05

0.6
0.5
0.4
0.3
0.2 14
0.1}

Statistical power (1-8) to detect &

0.0

Fig.8 Levels of statistical power (1 —f) for each of the 48 studies
included in the Mattioni Maturana et al. [65] meta-analysis compar-
ing the effects of high intensity interval training (HIIT) and moder-
ate-intensity continuous exercise on maximum oxygen consumption
(VO,,.,). Power was calculated from the reported sample sizes,
assuming that the pooled effect (d=0.40) represents the ‘true’ popu-
lation effect and a=0.05. The median study exhibited 14% statisti-
cal power, 42 of 48 studies (88%) had statistical power in the 0-20%
range and all but one (47 of 48, or 98%) were in the 0-33% range

p value

Fig.9 The estimated false-positive risk (FPR) of the studies on maxi-
mum oxygen consumption (VO,,.) that were included in the Mat-
tioni Maturana et al. [65] meta-analysis, assuming R=0.50. Only 3 of
the 48 studies (6.25%) produced FPR <0.05. The FPR of the 13 stud-
ies that produced p <0.05 was as high as 0.245, with a mean of 0.130
and a median of 0.123. Two related figures are highlighted for refer-
ence: i the minimum risk of type I error («) associated with p=0.05
has been estimated as 0.289; ii the relationship between p values and
a holds until p < 1/e, namely p <0.368, after which o reaches a pla-
teau

the magnitude of the effect derived from such a study will
likely be exaggerated. This is because, for a result to sat-
isfy the criterion of statistical significance (even the uncor-
rected p < 0.05) in an underpowered study, the effect will
have to be unusually large. Young et al. [115] described
the problem as follows:

The average result from multiple studies yields a rea-
sonable estimate of a "true" relationship. However,
the more extreme, spectacular results (the largest
treatment effects, the strongest associations, or the
most unusually novel and exciting biological stories)
may be preferentially published. Journals serve as
intermediaries and may suffer minimal immediate
consequences for errors of over- or mis-estimation,
but it is the consumers of these laboratory and clini-
cal results (other expert scientists; trainees choosing
fields of endeavour, physicians and their patients;
funding agencies; the media) who are "cursed" if
these results are severely exaggerated—overvalued
and unrepresentative of the true outcomes of many
similar experiments (p. 1418).
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Fig. 10 The expected and 30%
observed frequencies of p 27.4%
values, in intervals ranging

from p<0.05 to 0.95<p < 1.00, 25%

resulting from the studies on
maximum oxygen consumption
(VO,,,) included in the meta-
analysis by Mattioni Maturana
et al. [65], illustrating the pres-
ence of an excessive proportion
of studies with p <0.05

20%

15%

Relative frequencies of p values
—
o
R

5%

0%
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[l observed

<.056 <15 <26 <35 <45 <55 <65 <.75 <.85 <.95 <1.00

p values

o0 N = 10 per group

1.00 1

0.90 1

0.50 1

0.301
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Average effect size (d) for samples with p < .05

0.101
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N = 40 per group
0.60 //;? N = 50 per group

0.40. 7 /

- — N = 20 per group

N = 30 per group
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% N =700 per group

0.000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

& (known population effect size)

Fig. 11 Results of simulated experiments (100,000 simulated tests
per data point) illustrating the phenomenon of ‘winner's curse,’
namely the inflation of the apparent effect size (d) compared with the
known population effect size (6) from studies with various sample
sizes resulting in p <0.05. For sample sizes of 10 per group, namely
the median sample size of the 48 studies on maximum oxygen con-
sumption (VO,,,.) included in the meta-analysis by Mattioni Matu-

The ‘winner's curse’ can be shown by simulation, fol-
lowing the procedure proposed by Colquhoun [116]. If
we consider the pooled effect size reported by Mattioni

rana et al. [65], a small effect (6=0.20) can appear as large (d=0.80),
while a population effect size of §=0.40 (the pooled effect from the
meta-analysis by Mattioni Maturana et al. [65]) can appear highly
exaggerated, namely d=1.04. Notice that samples of N=100 per
group suffice to eliminate the inflation of medium population effect
sizes (0=d=0.50) but samples of N=~ 700 per group are required to
eliminate the inflation for small population effect sizes (6 =d=0.20)

Maturana et al. [65], namely d=0.40, and run 100,000 simu-
lated ‘experiments’ by drawing random samples of 100 per
group from populations designed to differ by d=0.40 (i.e.,
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experiments with 80% statistical power), we find that (i) con-
sistent with the theoretical power level of 80.36%, 80.38%
of the comparisons satisfy the p <0.05 criterion of statistical
significance, and (ii) importantly, the average observed effect
size is d=0.45, which approximates the given effect size
of d=0.40. On the other hand, if one runs 100,000 simu-
lated experiments with the same effect size but sample sizes
of 10 per group, namely the median sample size of the 48
studies on VO,, .. included in the meta-analysis by Mat-
tioni Maturana et al. [65], (i) the statistical power of 13.66%
approximates the theoretical value of 13.55% but (ii) the
average observed effect size is highly exaggerated, namely
d=1.04 instead of the given 6=0.40 (see Fig. 11). Indeed,
after excluding an apparent outlier with a nearly fivefold
effect size [66], the average effect size of the remaining 12
studies on VO, . in the meta-analysis by Mattioni Maturana
et al. [65] that produced p <0.05 was 1.01. In general, larger
sample sizes enable the estimation of the population effects
with greater precision, whereas small samples increase the
risk of greatly exaggerated estimates of effects.

3.1.6 Accuracy of Population Estimates

Davis-Stober and Dana [117] have proposed an index of the
accuracy of population estimates produced by the conven-
tional method of ordinary least squares (used in most of
the commonly employed statistical tests, including tests of
comparisons between sample means) compared against a
‘benchmark’ method of estimation that uses random esti-
mates for both the direction and the magnitude of treatment
effects (called ‘random least squares’). The index, called
the v-statistic, can range from zero to one, with a value of
one indicating that the conventional method of estimation
(ordinary least squares) is consistently more accurate than
the random method, and a value of zero indicating that the
random method of estimation is consistently more accurate
than ordinary least squares. The values of the v-statistic are
influenced by (i) the sample sizes, (ii) the magnitude of the
effect being investigated, and (iii) the number of parameters
that need to be estimated (i.e., two means in the case of a
t-test). Preempting the criticism that comparing the accuracy
of statistical tests against a ‘benchmark’ of random guess-
ing sets a meaninglessly ‘low bar,” Davis-Stober and Dana
[117] wrote:

If one's estimates are less accurate than our guessing
benchmark more than half of the time, there is little
point in using them to establish treatment effects. As
low as this hurdle may seem, we show that v < 0.5, or
even v = 0, can happen surprisingly often, particularly
when researching effect sizes conventionally catego-
rized as small and medium (p. 6)
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Fig. 12 Values of the v-statistic proposed by Davis-Stober and Dana
[116] for each of the 48 studies on maximum oxygen consumption
(VO,,,,,) included in the meta-analysis by Mattioni Maturana et al.
[65], comparing the effects of high intensity interval training (HIIT)
and moderate-intensity continuous exercise. The v-statistic is an
index of the relative accuracy of population estimates produced by
the traditional method of ordinary least squares compared with ‘ran-
dom least squares’ (i.e., random estimates for both the direction and
the magnitude of treatment effects). The average v-statistic was 0.124
and the median was 0.000. Nearly all studies (46 of 48, or 96%) had
values of the v-statistic below 0.500, and more than half (28 of 48, or
58%) had a v-statistic of zero, suggesting that random estimates were
consistently more accurate than estimates based on the observed data

This is precisely the scenario encountered in the HIIT
literature: small- to medium-size effects are being studied
with small samples. Therefore, to gauge the accuracy of esti-
mates derived from the studies included in the meta-analysis
by Mattioni Maturana et al. [65], comparing the effects of
HIIT and moderate-intensity continuous exercise on VO, .,
the v-statistic for each study was calculated following the
computational method outlined by Lakens and Evers [118].
The average v-statistic was 0.124 and the median was 0.000.
Nearly all studies (46 of 48, or 96%) had values of the v-sta-
tistic below 0.500, and more than half (28 of 48, or 58%)
had a v-statistic of zero (see Fig. 12). In the words of Lak-
ens and Evers [118], “obviously, if a random estimator is
more accurate than the estimator based on the observed data
(indicated by a v-statistic smaller than 0.5), a study does not
really reduce the uncertainty about whether the hypothesis
is true” (p. 283).

3.1.7 Summary

When judged by conventional statistical standards, most
studies investigating the effects of HIIT on fitness or health
have limited informational yield. This is because they are
examining small-to-medium effects with small samples, and
commonly test a plethora of dependent variables. Estimates
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of small-to-medium effects derived from small, underpow-
ered studies are characterized by such imprecision and
volatility that, given a large enough number of tests, some
will probably cross the conventional threshold of statisti-
cal significance. Such ‘statistically significant’ results will
likely reflect chance and, therefore, entail a low probability
of replication. In addition, even if they represent true effects,
such results likely overestimate the magnitude of the under-
lying effects.

3.2 The'ls As Effective As’ Problem

As noted in Sect. 2, statisticians commonly emphasize
that “absence of evidence is not evidence of absence” [53,
54]. The principle behind this motto is that p>0.05 (i.e.,
‘absence of evidence’) provides no indication that the null
effect, namely p; —p, =0, is the most likely result (i.e., ‘evi-
dence of absence’). In other words, finding p >0.05 for a
comparison between two sample means (such as the mean
of a group participating in HIIT and a group participating in
moderate-intensity continuous exercise training) only per-
mits a researcher to decide not to reject the null hypothesis.
Such a result cannot be taken as a basis for accepting the
null hypothesis (i.e., to conclude that there is ‘no difference’
or that the two treatments being compared have effects that
are ‘same,’ ‘equal,’ ‘similar,” ‘equivalent,” or ‘comparable’).

Establishing the ‘equivalence’ of two interventions
requires a different hypothesis, different design, differ-
ent power calculations, and a different statistical approach
[50-52]. An equivalence study begins with the difficult deci-
sion of determining a difference between the treatments that
represents the smallest effect size of interest (e.g., smaller
than any effect that can be considered clinically relevant,
meaningful, or worthwhile). Then, the null hypothesis is for-
mulated, stating that the difference between the two treat-
ment means, or part of its surrounding confidence interval,
falls outside the prespecified margin (i.e., suggesting that the
treatments may not be equivalent, or one may be meaning-
fully more effective than the other). The alternative hypoth-
esis would be that the difference between the treatments, and
its surrounding confidence interval, are within the prespeci-
fied margin (i.e., that the treatments are equivalent, or one
is as effective as the other). Power calculations for an equiv-
alence study are based on the largest treatment difference
considered to be practically irrelevant or inconsequential.
The hypothesis of equivalence can be tested by specialized
procedures, such as the two one-sided tests (TOST) method
[119-121].

Most researchers carefully avoid the use of the adjectives
‘similar’ or ‘comparable’ (let alone ‘equal’ or ‘same’) to
describe treatment means following a finding of p > 0.05.
This is because a very common scenario is that tests fail to
reject the null hypothesis, even though it is false, because

of low statistical power (e.g., having too few participants
to detect an effect given the magnitude of that effect). Yet,
the HIIT literature contains numerous claims that vari-
ous HIIT protocols have ‘similar’ or ‘comparable’ effects
to more time-consuming moderate-intensity continuous
exercise. Invariably, these claims are made on the basis of
findings of p>0.05 from studies that are underpowered to
detect small (d=0.20, requiring N =394 per group), medium
(d=0.50, requiring N =64 per group), or even large effects
(d=0.80, requiring N=26 per group). As noted earlier,
of the 48 studies included in the Mattioni Maturana et al.
meta-analysis [65] comparing HIIT to moderate-intensity
continuous exercise on VO,,.., all but one (47 of 48, or
98%) had statistical power in the 0-33% range. Examples of
claims made on the basis of underpowered studies include
claims of ‘equal’ changes across a wide range of physiologi-
cal parameters (samples of 8 and 8) [92], ‘similar’ changes
in aerobic capacity (samples of 7 and 7) [122], ‘similar’
metabolic adaptations (samples of 10 and 10) [89], ‘similar’
changes in arterial stiffness (samples of 10 and 10) [123],
‘similar’ cardiometabolic changes (samples of 9, 10, and 6)
[90], ‘similar’ cardiorespiratory adaptations in patients with
heart failure (samples of 8 and 8) [124], ‘similar’ changes
in body composition and fitness (samples of 16, 16, and
14) [125], ‘similar’ muscular and performance changes
(samples of 8 and 8) [126], and ‘similar’ enjoyment and
adherence (samples of 9 and 8) [127]. Likewise, such claims
are made on the basis of findings of p> 0.05 from studies
using within-subject designs that are also underpowered to
detect small (d=0.20, requiring N=199), medium (d=0.50,
requiring N=34), or even large effects (d=0.80, requiring
N=15). Examples include claims of ‘similar’ adaptations
in signaling molecules associated with mitochondrial bio-
genesis (N=10) [128], ‘similar’ mitochondrial function
(N=38) [129], ‘similar’ 24-h oxygen consumption (N =38)
[130], ‘similar’ energy expenditure (N=9) [131], ‘similar’
increases in serum brain-derived neurotrophic factor (N=38)
[132], and ‘similar’ enjoyment levels (N="7 [133]; N=11
[134]). To reiterate the essential point, claims of ‘similar’
or ‘comparable’ effects are unjustified on the basis of ‘non-
significant’ comparisons between means (p > 0.05). Claims
of ‘similar’ or ‘comparable’ effects can only be justified if
appropriate hypotheses and associated tests (i.e., of equiva-
lence or non-inferiority) are used [119-121].

3.2.1 Poor Reporting of Power Calculations

By using p>0.05 as a criterion for establishing equivalence,
there is no end to the extraordinary discoveries that research-
ers can claim. One common approach has been using
severely underpowered comparative studies in conjunction
with the p > 0.05 criterion in a race to discover the smallest
duration or amount of exercise that can still be claimed to
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Table 3 (continued)

Comment

Samples Verbatim section on power

Study

0.017 indeed

requires only N=11 per group. However, the cited preliminary study

(0.05/3)

14 & 14 A priori power analysis was performed to determine the sample size. The pri- Assuming a large effect d=1.5 with an adjusted o

Matsuo et al., 2014 [144]

mary outcome variable of this study was the increase of VO, achieved
through three types of exercise intervention. On the basis of data from

only reported within-subjects changes in VO, in two participants, not
intergroup differences or standard deviations. Moreover, the ‘previous

both a previous study and our preliminary study on changes in VOZmax,
we assumed a 15% difference in the training effect between the three

study” was conducted on a patient population (heart failure), with low

baseline levels of VO, and there is no indication of a "15% difference

groups with an SD estimate of 10%. With an alpha error rate of 0.017 (with
Bonferroni adjustment for post hoc tests) and statistical power of 80%, the
minimal sample size in each group was estimated to be 11 subjects (33

in the training effect" (the cited study reported increases of 46% vs 14%,

for interval and moderate continuous exercise, respectively)

subjects in total). Assuming subject attrition such as dropout, we recruited
14 subjects for each group (42 subjects in total) in this study (p. 46)

No sample-size calculation

11&5

Wilson et al., 2019 [145]
Way et al., 2020 [146]

The researchers did not cite an anticipated effect size, so the calculations can-

12 & 12 Sample size was calculated based on a projected change in peripheral

not be verified. Solving for the missing effect size shows that the study was

arterial stiffness [pulse wave velocity] with [moderate-intensity continu-
ous training] in adults with [type 2 diabetes] similar to the [moderate-

1.2). The

researchers reported basing their calculations on within-group changes but

sufficiently powered only for a large between-group effect (d

intensity continuous training] protocol in our study. A priori, two-tailed

power calculation of o

their analyses were for inter-group comparisons. The cited source reported

d
d

0.20 gave a power of 0.82 for a

0.05 and =

0.50 (femoral) for within-group changes and
0.84 (femoral) for inter-group comparisons

0.80 (radial) and d

total sample size of 45 (n=15 per group) (p. 150)

1.10 (radial) and d=

HIIT high-intensity interval training, MICT moderate-intensity continuous training, SD standard deviation, VO,,,,. maximum oxygen consumption

be ‘as effective as’ (or ‘similar’ or ‘comparable’ to) either
‘traditional” HIIT or moderate-intensity continuous exer-
cise. These minimalist forms have been termed ‘low-volume
HIIT, ‘very low volume HIIT,” or ‘reduced exertion HIIT,
among other labels.

To illustrate the problems associated with this approach,
we examined the studies included in a recent systematic
review of ‘low-volume HIIT,” which concluded that it “can
induce similar, and at times greater, improvements in car-
diorespiratory fitness, glucose control, blood pressure, and
cardiac function when compared to more traditional forms
of aerobic exercise training including high-volume HIIT
and moderate intensity continuous training, despite requir-
ing less time commitment and lower energy expenditure”
(p- 1013) [135]. This is a remarkable claim because ‘low-
volume HIIT” was said to differ from regular HIIT solely by
entailing a lower total duration of high-intensity intervals
(< 15 min). Otherwise, the two modalities of training were
said to share common features (e.g., intensity of 80—100%
VO,,,.. or HRmax, duration of each high-intensity interval
of 1-4 min, work-to-rest ratio of 1:1 to 1:2). In other words,
the review concluded that, contrary to conventional wisdom,
doing less exercise is ‘as effective as’ (or, remarkably, even
‘more effective than’) doing more exercise while holding
other important aspects of the exercise ‘dose’ constant.

The review was based on 11 studies (see Table 3) and
used the adjective ‘comparable’ to describe the results of
the comparisons between the minimalist versions of HIIT
and the comparator groups in 9 of the 11 cases [135]. Pre-
dictably, the studies had the common denominator of being
underpowered (sample size range: 5-22 per group, mean:
13.5, mode: 12). Using a two-tail test, a two-group com-
parative study with N=12 per group has 7.6%, 21.6%, and
46.6% statistical power to detect a small (d=0.20), medium
(d=0.50), and large (d=0.80) effect, respectively.

Researchers might wonder how this is possible since
item 7a of the CONSORT checklist explicitly states that
authors must explain “how sample size was determined”
[147]. Given the sample size range of 5-22 per group, it
is unsurprising that the claimed adequacy of the sample
size could not be verified in any of the 11 studies. In four,
no information was provided for how the sample size was
determined. In the remaining studies, the irregularities
ranged from not providing complete information (e.g., not
stating the anticipated effect size), citing nonverifiable or
incorrect information (e.g., citing effect sizes for within-
group changes from previous studies but aiming to conduct
between-group comparisons), citing the effect size from an
early study [66] that has been identified as an outlier [148],
to reporting the required information but claiming that the
sample size needed to be only a fraction of what the calcula-
tions indicated in order to reach the desired level of statisti-
cal power. As one example:
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Based on a meta-analysis that compared HIIT with
continuous endurance training on maximal oxygen
update (VO,,,max) improvements in adults, the
estimated standardized mean difference (Cohen's d)
between HIIT and [moderate-intensity continuous
training ] was approximately 0.4. Therefore, it was
anticipated that a sample size of 12 participants per
group was adequate to detect this difference between
groups on our primary outcome (i.e., VO,,,,.), with a
power of 0.8 at an alpha level of 0.05 (pp. 1998-1999)
[141].

To reach 80% statistical power given an effect size
d=0.4 requires 100 participants per group rather than 12.
Bonafiglia et al. [149] similarly found that 21 of 27 stud-
ies included in a meta-analysis comparing the effects of
sprint interval training and continuous training either did
not report sample-size calculations or did not provide full
information. The reporting of power calculations is subopti-
mal both in the medical literature [150] and within exercise
and sport science [151]. According to Charles et al. [150],
only 34% of trials published in medical journals reported all
data required to calculate the sample size, had accurate cal-
culations, and were based on accurate assumptions. Of the
remaining, 43% did not report all the required parameters to
allow readers to verify the calculation, and 5% did not report
sample size calculations. Within exercise and sport science,
the situation appears worse. An analysis of 120 manuscripts
submitted to a prominent disciplinary journal [151] shows
that the median sample size was 19. Only 12 of the manu-
scripts (10%) included any sample-size calculations and, of
them, four did not provide a justification for the cited effect
size. Similar to the situation in the HIIT literature discussed
in this section [135], none of the 12 manuscripts provided
all the information required to enable the correct reproduc-
tion of the cited sample-size goal (i.e., the statistical test to
be conducted, the targeted effect size, the level of «, and the
desired level of statistical power). This situation is of grave
concern and necessitates urgent change [77].

4 A Crisis of Confidence, a Looming
Trainwreck, or an Opportunity for Reform?

Over the past 15 years, the research literature on HIIT has
produced some extraordinary claims, which, upon closer
inspection, are backed by surprisingly fragile evidence. This
phenomenon can be analyzed from several angles. Perhaps
the striking discrepancy between the boldness of the claims
and the limitations of the experimental evidence is a reflec-
tion of a field eager for a scientific breakthrough. As noted in
Sect. 2, journal editors and peer reviewers may, consciously
or subconsciously, “apply lower standards” (p. 4) [62] when

evaluating manuscripts reporting findings that seem highly
intriguing or novel. Likewise, the willingness of the press
to disseminate, and occasionally amplify, the extraordinary
claims surrounding HIIT also suggests that the public at
large may be eager for a breakthrough from exercise science,
some miraculous discovery that would magnify and acceler-
ate the benefits of exercise while requiring less effort [152].
An equally fascinating question pertains to the apparent
willingness of exercise science as a research field to enter a
state of ‘suspension of disbelief,” accepting and propagating
claims that defy conventional wisdom and research choices
that directly contradict established methodological and sta-
tistical best practices. Like other scientific fields, exercise
science will inevitably, sooner or later, have to confront its
own crisis of replication and confidence [63]. Postponing
this conversation will not help avert it. Therefore, it seems
ironic that, while a push for more stringent methodologies
[112, 153] and more responsible reporting [154] is sweeping
the scientific landscape, one of the most prominent research
lines within exercise science is characterized by a prepon-
derance of studies with questionable statistical standards.
In the previous sections, it was shown that most sam-
ples in the HIIT literature are small, and thus the studies
are underpowered to detect small, medium, or even large
effects. This is important because the effect sizes, in most
cases (especially when HIIT is compared against moder-
ate-intensity continuous exercise rather than a no-exercise
control), are likely to be small. It was also shown that most
studies do not have one outcome designated as primary but
rather tend to include long lists of dependent variables, all
of which are tested at p < 0.05, without consideration for the
inflation of a. There is also great flexibility in designs, defi-
nitions, outcomes, and analytic approaches, from the defini-
tion of HIIT to the selection of variables to represent vari-
ous domains of physiological function (e.g., metabolism).
Moreover, extraordinary claims related to the effectiveness
of HIIT, along with claims that HIIT addresses “the most
commonly cited reason for not exercising” (p. 212) [155] or
“the primary reason for [the] failure to exercise on a regular
basis” (p. 61) [156], namely lack of time, stimulate the inter-
est or curiosity of the public (e.g., the narrative that, con-
trary to current recommendations, one only needs to exercise
for a few seconds per day). The intense interest from the
media may encourage or incentivize researchers to produce
research results that support compelling narratives but may
have low replicability. In particular, claims that smaller and
smaller amounts of exercise were found to be ‘effective’ for
improving fitness and health are bound to capture the inter-
est of the general public. For example, recent media reports
have highlighted that repeated 4-s spurts of exercise, totaling
no more than 2 min per day [157], or a single 3-s muscular
contraction per day [158] have been found to result in ‘sig-
nificant’ gains in aerobic capacity (by 13%) and muscular
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strength (by 12%), respectively (based on samples of 11 and
13, respectively).

Arguably, there is a striking similarity between the pat-
terns seen in the HIIT literature and what was unfolding
in the research field investigating phenomena of behavio-
ral priming within psychology in the 2000s. The literature
was being inundated with findings that have been described
as “implausible” (p. 13) [159], “spectacular” (p. 19) [160],
“fascinating” (p. 20) [161], and “eye-catching and counter-
intuitive... the kind of sexy research that popular science
writers love to describe” (p. 6) [161]. Failed attempts to
replicate several of these widely publicized results led to an
ongoing ‘replication crisis’ [162] or ‘crisis of confidence’
[163] in psychology. In response, Nobel laureate Daniel
Kahneman wrote an open letter to researchers involved
in research on priming, in which he encouraged them to
try to remove the question mark that had been attached to
their field [164]. He emphasized: “Your problem is not with
the few people who have actively challenged the validity
of some priming results. It is with the much larger popula-
tion of colleagues who in the past accepted your surprising
results as facts when they were published.” Reminding read-
ers that “a posture of defiant denial is self-defeating,” Kah-
neman pointed out what was at stake: “I see a train wreck
looming. I expect the first victims to be young people on
the job market. Being associated with a controversial and
suspicious field will put them at a severe disadvantage in the
competition for positions. Because of the high visibility of
the issue, you may already expect the coming crop of gradu-
ates to encounter problems.”

Although undertaking the kind of radical reforms advo-
cated by Kahneman is unlikely to be universally appreci-
ated or endorsed, psychology has, to some extent, entered a
period of critical self-reflection. Many authors have argued
that the replication crisis can be seen as an opportunity for
positive change [165—167]. This perspective has grown into
a movement [168] that has even been characterized, perhaps
optimistically or prematurely, as a ‘renaissance’ [169]. The
winds of change are reaching other fields, even beyond the
social sciences, such as cancer biology and drug develop-
ment, which are coming to terms with the fact that they, too,
are facing a replication crisis [170, 171].

The replication crisis in psychology offers a potential
blueprint for how exercise science could proceed. Arguing
that there is no problem is certainly a comforting option
but, to echo Kahneman, “a posture of defiant denial is self-
defeating.” Continuing to overlook the fundamental princi-
ples of statistics in pursuit of implausible results that will
capture the next headline will predictably lead to poor long-
term outcomes. The exorbitant claims in the HIIT literature
could serve as a clarion call that should inspire a period of

critical self-reflection and positive reform. Recognizing the
pitfalls, returning to, and respecting the fundamentals could
have a lasting positive influence on the integrity, societal
value, and reputation of exercise science.

It is, therefore, encouraging that the first signs of reform
within exercise science have started to appear. Statistical
experts [23, 77] and journal editors [76, 99, 151, 172] are
making strong cases about the need to improve the quality
of research designs and statistical analyses. Newly created
organizations, such as the Consortium for Transparency in
Exercise Science [63] and the Society for Transparency,
Openness, and Replication in Kinesiology, are spearhead-
ing educational initiatives aimed at promoting stronger
research practices. In psychology, arguably one of the most
consequential reform efforts has been the push to expand
the practice of study preregistration [173—176]. Therefore,
the growing number of journals within exercise science that
encourage preregistration and welcome registered reports
represents a particularly promising development [177].
Beyond these efforts, curricular reforms will be necessary,
with the goal of significantly improving statistical literacy
at both the undergraduate and postgraduate levels. At the
undergraduate level, courses intended to promote critical
appraisal skills, specifically designed for consumers of
research information (i.e., future exercise professionals),
should be considered a necessity for a field aspiring to fully
transition to a model of evidence-based practice. At the post-
graduate level, where most students are prospective produc-
ers of research information, the teaching of statistical skills
should be combined with efforts to cultivate a mindset that
welcomes openness and transparency while resisting the
“disciplinary incentives” to “favor novelty over replication”
(p. 615) [57]. Finally, an important issue that the extraordi-
nary claims surrounding HIIT have brought to the surface
is that the field of exercise science must critically reexamine
its relationship with the mass media. Researchers, univer-
sity press offices, and journal editors should also resist the
temptation to construct and disseminate media-friendly nar-
ratives that are based on statistically questionable or fragile
evidence.
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