

ARTICLE

Cardiorespiratory demands of competitive rock climbing

Nigel A. Callender, Tara N. Hayes, and Nicholas B. Tiller

Abstract: Rock climbing has become a mainstream sport, contested on the Olympic stage. The work/rest pattern of bouldering is unique among disciplines, and little is known about its physiological demands. This study characterised the cardiorespiratory responses to simulated competition. Eleven elite boulderers (7 male) volunteered to participate (age = 23.3 ± 4.5 years; mass = 68.2 ± 9.7 kg; stature = 1.73 ± 0.06 m; body fat = $10.4\% \pm 5\%$). Subjects completed incremental treadmill running to determine maximal capacities. On a separate day, they undertook a simulated Olympic-style climbing competition comprising 5 boulder problems, each separated by 5 min of rest. Pulmonary ventilation, gas exchange, and heart rate were assessed throughout. Total climbing time was 18.9 ± 2.7 min. Bouldering elicited a peak oxygen uptake of 35.8 ± 7.3 mL·kg $^{-1}$ ·min $^{-1}$ ($\sim 75\%$ of treadmill maximum) and a peak heart rate of 162 ± 14 beats·min $^{-1}$ ($\sim 88\%$ of maximum). Subjects spent $22.9\% \pm 8.6\%$ of climbing time above the gas exchange threshold. At exercise cessation, there was an abrupt and significant increase in tidal volume (1.4 ± 0.4 vs. 1.8 ± 0.4 L; p = 0.006, d = 0.83) despite unchanged minute ventilation. Cardiorespiratory parameters returned to baseline within 4 min of the rest period. In conclusion, competitive bouldering elicits substantial cardiorespiratory demand and evidence of tidal volume constraint. Further studies are warranted to explore the effect of cardiorespiratory training on climbing performance.

Novelty:

- Competitive bouldering evokes a high fraction of maximal oxygen uptake and prolonged periods above the gas exchange threshold.
- · Climbing appears to impose a constraint on tidal volume expansion.
- Cardiorespiratory indices in elite climbers return to baseline within 2–4 min.

Key words: bouldering, heart rate, oxygen uptake, respiratory, rock climbing, sport climbing, ventilation.

Résumé: L'escalade est devenue un sport courant maintenant disputé sur la scène olympique. Le modèle travail/repos de l'escalade de bloc est unique parmi les disciplines et on en sait peu sur ses exigences physiologiques. Cette étude décrit les ajustements cardiorespiratoires à la compétition simulée. Onze grimpeurs de bloc de niveau élite (7 hommes, âge = 23,3 \pm 4,5 ans; masse = 68,2 \pm 9,7 kg; stature = 1,73 \pm 0,06 m; graisse corporelle = 10,4 \pm 5 %) se portent volontaires. Les sujets effectuent de course par incrément sur tapis roulant pour déterminer leur capacité individuelle. En un jour distinct, ils participent à une simulation de compétition d'escalade de style olympique comprenant cinq escalades de bloc, chacune séparée par 5 minutes de repos. La ventilation pulmonaire, les échanges gazeux et la fréquence cardiaque sont évalués tout au long de la compétition simulée. Le temps total de montée est de 18,9 \pm 2,7 min. L'escalade de bloc engendre un pic de la consommation d'oxygène de 35,8 \pm 7,3 mL·kg⁻¹·min⁻¹ (~75 % du maximum sur tapis roulant) et un pic de fréquence cardiaque de 162 \pm 14 battements·min⁻¹ (~88 % du maximum). Les sujets passent 22,9 \pm 8,6 % du temps d'escalade au-dessus du seuil d'échange gazeux. À l'arrêt de l'exercice, on enregistre une augmentation brusque et significative du volume courant (1,4 \pm 0,4 vs 1,8 \pm 0,4 L; p = 0,006, d = 0,83) nonobstant un débit ventilatoire inchangé. Les paramètres cardiorespiratoires reviennent à leur valeur initiale dans les 4 minutes suivant la période de repos. En conclusion, l'escalade de bloc suscite une demande cardiorespiratoire importante et une contrainte d'expansion du volume courant. D'autres études sont requises pour explorer l'effet de l'entraînement cardiorespiratoire sur les performances d'escalade. [Traduit par la Rédaction]

Les nouveautés :

- L'escalade de bloc sollicite en compétition une fraction élevée de la consommation maximale d'oxygène et des périodes prolongées au-dessus du seuil d'échanges gazeux.
- · L'escalade semble imposer une contrainte d'expansion du volume courant.
- Les paramètres cardiorespiratoires chez les grimpeurs d'élite reviennent à leur valeur initiale en 2 à 4 minutes.

Mots-clés: escalade de bloc, fréquence cardiaque, consommation d'oxygène, respiratoire, escalade, escalade sportive, ventilation.

Received 29 June 2020. Accepted 7 August 2020.

N.A. Callender. Department of Anaesthetics, Northumbria Specialist Emergency Care Hospital, Cramlington, Northumberland, NE23 6NZ, UK; School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, LS1 3HE, UK.

T.N. Hayes. Academy of Sport and Physical Activity, Sheffield Hallam University, Sheffield, S10 2BP, UK.

N.B. Tiller. Institute of Respiratory Medicine and Exercise Physiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Centre, Torrance, CA 90502, USA.

Corresponding author: Nigel A. Callender (email: nigelcallender@gmail.com).

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from copyright.com.

Introduction

Rock climbing has transitioned from a niche activity to mainstream sport contested on the Olympic stage. The Olympic discipline comprises 3 events, all with markedly different activity profiles: lead climbing (roped ascents of routes in excess of 15 m), speed climbing (timed sprints of a standardised, predetermined route), and bouldering (rope-free, very short-duration ascents typically requiring greater muscular effort).

Rock climbing is characterised by high-intensity, intermittent contractions of the upper limbs (Billat et al. 1995; Michailov et al. 2009), and has been more closely compared to resistance rather than aerobic exercise (Kuepper et al. 2009). Research suggests that longer duration lead/roped climbing imposes a substantial cardiorespiratory demand. For example, during submaximal efforts on familiar routes, elite climbers exhibited a mean oxygen uptake ($\dot{V}O_2$) of 22.7 \pm 3.7 mL·kg⁻¹·min⁻¹ and heart rate of 144 \pm 14 beats·min⁻¹ (Sheel et al. 2003). In highly trained climbers, a "competition-style" route elicited a peak oxygen uptake (VO_{2peak}) and heart rate of 31.9 \pm 5.3 mL·kg⁻¹·min⁻¹ and 162 \pm 17 beats·min⁻¹ respectively (Watts et al. 2000), while others report values as high as $44.1 \pm 5.8 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$ (84% \pm 12.4% maximum) and 175 \pm 14 beats·min⁻¹ (91.4% \pm 9.8% maximum (de Geus et al. 2006)). Despite variability in the climbing tasks imposed and the ability of subjects, these data suggest that lead/roped ascents evoke considerable perturbations of the cardiovascular and respiratory systems, although this has yet to be comprehensively investigated in a competitive setting.

Studies to date have focused on the responses to lead/roped climbing (Billat et al. 1995; Watts et al. 2000; Sheel et al. 2003; de Geus et al. 2006) and climbing-specific ergometry (Watts and Drobish 1998). However, the markedly different activity profile of bouldering would suggest that it evokes distinct physiological demands. For example, lead/roped competition climbing requires single, sustained efforts lasting 4-6 min (Arbulu et al. 2015). By contrast, competition bouldering comprises a fixed number of boulder problems contested in 5-min "attempt intervals", with each interval requiring multiple and successive efforts lasting 30-40 s (White and Olsen 2010; Medernach et al. 2016). This work/rest pattern is unique among competitive climbing disciplines. Given that aerobic contributions to energy metabolism increase with successive bouts of high-intensity exercise (Bogdanis et al. 1996), and that aerobic pathways provide the primary means of replenishing the ATP-PCr system (Taylor et al. 1983; McMahon and Jenkins 2002), cardiorespiratory capacity may be an important determinant of bouldering performance, as might be the ability to recover between successive climbs. It has also been speculated that isometric contractions of the upper limbs during climbing may impact on breathing patterns and mechanics (Kuepper et al. 2009; Baláš et al. 2014). However, both hypotheses have yet to be tested.

To the authors' knowledge, only 2 studies have assessed the cardiac responses to bouldering. During a simulated competition, La Torre et al. (2009) observed peak heart rates of ~93% age-predicted maximum, while Callender et al. (2020) reported values of \sim 92% agepredicted maximum during a single, moderately difficult boulder problem. Neither study, however, reported data on pulmonary variables. There is also a paucity of data in subjects of a consistently elite standard in any discipline of climbing, and tasks previously employed have been inconsistent in their difficulty relative to an individual's capacity for peak performance (Sheel et al. 2003). Accordingly, with impending Olympic inclusion, research is needed to elucidate the physiological responses to competition bouldering, especially in elite populations. Such data may help identify novel targets for training interventions and allow better cardiorespiratory risk stratification of the sport. Accordingly, the aims of this study were to characterise the cardiorespiratory demands of an elite-standard bouldering competition, to assess the recovery rate of key physiological variables in the post-climb

Table 1. Subject characteristics.

Subject	Age	Mass	Stature	Body	BMI	
no.	(y)	(kg)	(m)	fat (%)	(kg⋅m ⁻²)	
1 (M)	22.7	66.6	1.73	9.1	22.3	
2 (M)	21.3	88.4	1.83	6.1	26.4	
3 (M)	23.9	62.8	1.70	9.1	21.7	
4 (M)	33.1	59.9	1.72	9.0	20.2	
5 (M)	20.2	61.3	1.68	4.0	21.7	
6 (M)	20.9	70.3	1.80	5.8	21.7	
7 (M)	21.3	68.1	1.83	6.2	20.3	
8 (F)	22.3	67.8	1.71	14.3	23.2	
9 (F)	23.9	60.7	1.65	16.6	22.3	
10 (F)	21.0	65.9	1.65	18.9	24.2	
11 (F)	18.9	65.3	1.73	15.0	21.8	
Male						
Mean	23.3	68.2	1.76	7.0	22.1	
SD	4.5	9.7	0.06	2.0	2.1	
Female						
Mean	21.5	64.9	1.76	16.2	22.9	
SD	2.1	3.0	0.04	2.0	1.1	
Group						
Mean	22.7	67.0	1.73	10.4	22.4	
SD	3.8	7.8	0.06	5.0	1.8	

Note: BMI, body mass index; F, female; M, male.

rest period, and to examine the degree to which climbing exerted influence over respiratory patterns.

Materials and methods

Subjects

Eleven elite climbers volunteered to participate (see Table 1 for characteristics). Their performance levels were male (n = 7), mean redpoint grade Fontainebleau 8b (International Rock Climbing Research Association (IRCRA) 28 \pm 2.2); female (n = 4), mean redpoint grade Fontainebleau 7c+ (IRCRA 25 \pm 1.3), which classified them as Higher-Elite Male and Elite Female, respectively (Draper et al. 2015). Ten of the subjects were experienced competitors at international level and, at the time of testing, 6 were current members of the GB Bouldering Team. The group had a mean 12.6 \pm 3.6 years of climbing experience (9.3 \pm 4.2 years competing in bouldering at any level) and were engaged in 1.3 \pm 1.5 h of nonclimbing aerobic exercise per week. Following approval from the institution's Research Ethics Committee, subjects provided written, informed consent. Prior to testing, subjects abstained from food for 3 h, alcohol and caffeine for 12 h, and intense exercise for 48 h. Due to scheduling constraints, the female subjects were not tested during a standardised phase of the menstrual cycle.

Experimental design

Subjects attended the laboratory on 2 occasions, separated by at least 48 h. At the first visit, they completed basic anthropometry via bioelectrical impedance (InBody 720, Seoul, Korea), a test of finger-flexor strength, and a maximal incremental exercise test on a motorised treadmill. At the second visit, subjects undertook a simulated, Olympic-format bouldering competition comprising 5 boulder problems, with physiological responses assessed throughout.

Visit 1

Finger strength

Finger-flexor strength was assessed independently in each arm using bespoke apparatus comprising a 19-mm, flat wooden hold with a 2-mm edge radius, attached to an S-Type load-cell orientated in the horizontal position (Weone YZC-516, Guangdong, China; range 0–100 kg, hysteresis 0.1%, sensitivity 0.02%). Subjects

Callender et al. 163

were required to grip the wooden hold with fingers in the half-crimp position, with the upper-arm restrained, and the elbow in 90° of flexion (see Supplementary File S1,¹ which illustrates the apparatus setup). The force signal was amplified following a Wheatstone Bridge interface (PhidgetBridge; Phidgets Inc., Calgary, Alta., Canada) and sampled at 60 Hz. The peak value attained from the best-of-three efforts was recorded and expressed in both absolute terms (N) and relative to body mass (N·kg⁻¹).

Maximal incremental exercise

To determine maximal aerobic capacities, subjects completed a ramp incremental exercise test on a motorised treadmill (Saturn; $h/p/\cos$ mos, Traunstein, Germany). Following seated rest for 3 min, exercise commenced at 8 km·h⁻¹ for 4 min at a 1% incline (warm-up), after which the speed was increased by 1 km·h⁻¹ each minute until volitional fatigue. The test was designed to elicit maximal capacities within 8–12 min. Pulmonary ventilation and gas exchange were measured on a breath-by-breath basis (Metalyzer 3b; Cortex, Leipzig, Germany), heart rate (f_C) was measured via telemetry (Polar H7; Polar Electro Oy, Kempele, Finland), and maximal values were calculated as the highest 30-s mean. Following the test, gas exchange threshold (GET) was identified using the V-slope method (Beaver et al. 1986).

Visit 2

Simulated competition

The simulated competition followed International Federation for Sport Climbing (IFSC) regulations. Subjects attempted 5 different boulder problems set by an experienced IFSC-accredited route-setting team and scored by a single, experienced competition judge. The competition wall ranged from 80° (slab) to 150° (steep overhang). Each subject attempted the boulder problems "on-sight" without prior knowledge of the climb. The format allowed a 5-min attempt interval during which participants had unlimited tries to complete the allocated problem, followed by 5 min of passive rest before progressing to the next climb. During the between-interval rest period, participants returned to the same seated location, facing away from the competition wall, and were reminded not to speak unless to convey important information. Where participants completed a boulder problem within the allocated 5 min, the remaining time was added to the rest period. For this reason, exercise time and rest time have been analysed independently. Participants were instructed to treat the simulation as a real competition.

Measures

Pulmonary ventilation (\dot{V}_E) and gas exchange ($\dot{V}O_2$ and $\dot{V}CO_2$) were assessed on a breath-by-breath basis throughout the simulated competition (including recovery periods) using a portable gas analyser, collectively weighing ~600 g (MetaMax 3b; Cortex, Leipzig, Germany) (Supplementary File S2¹). The peak and nadir means were calculated using the highest and lowest 30-s values, respectively. Heart rate was recorded continuously via telemetered chest strap (Polar H7). In an effort to quantify the degree to which climbing influenced respiratory patterns, we assessed tidal volume (V_T) , respiratory frequency (f_B) , and mean inspiratory and expiratory flow (V_T/T_I) and V_T/T_E in the work-to-rest transition. Specifically, we compared values in the 8 respiratory cycles occurring immediately before the cessation of exercise in the final climb (peak-exercise), to 8 respiratory cycles performed immediately after the cessation of exercise when external loads on the torso were zero but minute ventilation (V_E) was assumed to remain elevated (Tiller et al. 2017a). Blood lactate (BLa) concentration was sampled from the earlobe (Lactate Pro 2, Arkray, Japan) immediately before and after each attempt interval. Rating of perceived exertion (RPE; Borg 6–20 scale; Borg 1982) for whole-body (RPE $_{\rm Body}$) and forearm (RPE $_{\rm Forearm}$) were recorded immediately prior to the blood sample.

Statistical analysis

Data were analysed using SPSS (version 26; IBM, Armonk, N.Y., USA). Normality of distribution was assessed using the Shapiro–Wilk test. $\dot{V}O_2$, \dot{V}_E , f_C , BLa concentration, and RPEs (RPE_{Body} and RPE_{Forearm}) during the 5-min recovery period following the final climb were assessed using a repeated-measures ANOVA. Bonferroni-adjusted post hoc tests were performed on significant interactions relative to baseline. Ventilatory patterns (V_T and f_B) and mean inspiratory and expiratory flow (V_T/T_I and V_T/T_E) at the end of the final climb and immediately upon exercise cessation were compared using a related-samples Wilcoxon Signed Rank test. Effect size (Cohen's d) was used to quantify the magnitude of the difference between group means (0.2 = small, 0.5 = medium, 0.8 = large; Cohen 1988). Data are presented as means \pm SD, and critical α level was set at 0.05.

Results

Visit 1

Finger strength

Group mean finger-flexor strength was 574.4 \pm 110.3 N (0.88 \pm 0.13 N·kg⁻¹) and 567.8 \pm 106.2 N (0.90 \pm 0.14 N·kg⁻¹) on the right and left sides, respectively. Force readings were not significantly different between sides (p > 0.05, d = 0.031). In males, force was similar in the right and left sides (615.0 \pm 110.7 vs. 621.0 \pm 88.6 N) but was slightly unequal in females (503.3 \pm 73.7 vs. 474.8 \pm 61.2 N). When comparing between the sexes, males exhibited higher values than females on the left side (621.0 \pm 88.6 vs. 474.8 \pm 61.2 N) and the right side (615.0 \pm 110.7 vs. 503.3 \pm 73.7 N), although the low number of female subjects precluded statistical comparison.

Maximal incremental exercise

Peak physiological responses to incremental treadmill exercise are shown in Table 2. The group mean maximal oxygen uptake ($\dot{V}O_{2max}$) was 47.9 \pm 7.8 mL·kg $^{-1}$ ·min $^{-1}$. $\dot{V}O_{2max}$ was higher in males compared with females (53.0 \pm 4.1 vs. 39.0 \pm 1.6 mL·kg $^{-1}$ ·min $^{-1}$) and was equivalent to 111% and 104% of the respective predicted norms (Kaminsky et al. 2015). The group mean GET occurred at 55% \pm 7% of $\dot{V}O_{2max}$ (51% and 60% $\dot{V}O_{2max}$ for males and females, respectively). Resting BLa concentration was 0.9 \pm 0.02 mmol·L $^{-1}$, and this peaked at 10.6 \pm 2.0 mmol·L $^{-1}$ at 4–6 min after exercise.

Visit 2

Simulated competition

Physiological responses to simulated competition (excluding rest intervals) are shown in Table 3. Competition duration (from commencement of the initial attempt of the first problem to cessation of exercise on the final problem) was 44.2 \pm 0.7 min with a cumulative exercise time of 18.9 \pm 2.7 min. Subjects made 4.2 \pm 2.2 attempts per problem (range 1–12), and a cumulative 21.0 \pm 4.7 attempts throughout (range 14–25). Climbing evoked a $\dot{V}O_{2peak}$ of 35.8 \pm 7.3 mL·kg $^{-1}$ ·min $^{-1}$, which was equivalent to 75% \pm 1.2% of $\dot{V}O_{2max}$ achieved during the maximal treadmill test (males = 38.0 mL·kg $^{-1}$ ·min $^{-1}$ (71% $\dot{V}O_{2max}$); females = 31.9 mL·kg $^{-1}$ ·min $^{-1}$ (82% $\dot{V}O_{2max}$)). \dot{V}_E reached 67.2 \pm 20.1 L·min $^{-1}$ which was equivalent to 58.1% \pm 15.4% maximal \dot{V}_E (\dot{V}_{Emax}) (males = 69.6 \pm 24.0 L·min $^{-1}$ (54.1 \pm 15.3% \dot{V}_{Emax}); females = 62.8 \pm 12.2 L·min $^{-1}$ (65.0 \pm 15.1% \dot{V}_{Emax})). Heart rate reached 162 \pm 14 beats·min $^{-1}$, which was equivalent to 88% \pm 0.1% maximal heart rate (HR_{max}) (males = 165 \pm

Table 2. Peak cardiorespiratory responses to ramp incremental treadmill test.

	Rest	Maximum (group)	Maximum (M)	Maximum (F)
$\dot{V}O_2$ (L·min ⁻¹)	0.4±0.1	3.2±0.7	3.6±0.5	2.5±0.1
$VO_2 (ml \cdot kg^{-1} \cdot min^{-1})$	4.8 ± 1.3	47.9 ± 7.8	53.0 ± 4.1	39.0 ± 1.6
$\dot{V}CO_2$ (L·min ⁻¹)	0.3 ± 0.1	3.6 ± 0.7	4.1 ± 0.4	2.9 ± 0.2
RER	0.9 ± 0.1	1.14 ± 0.07	1.14 ± 0.06	1.13 ± 0.09
$f_{\rm C}$ (beats·min ⁻¹)	$73 \pm s14$	186±11	185 ± 14	187±5
$\dot{V}_{\rm E} ({ m L\cdot min}^{-1})$	11.9 ± 3.6	116.6±17.9	127.2 ± 8.4	98.1±14.6
$V_{\mathrm{T}}\left(\mathrm{L}\right)$	0.8 ± 0.3	$2.2 \!\pm\! 0.4$	2.4 ± 0.4	1.9 ± 0.2
$f_{\rm R}$ (breath·min ⁻¹)	17.5 ± 4.4	53.6 ± 8.1	54.4 ± 6.8	52.2 ± 11.0
$V_{\rm T}/T_{\rm I} ({\rm L\cdot s}^{-1})$	0.5 ± 0.2	3.8 ± 0.7	4.2 ± 0.3	3.1 ± 0.4
$\dot{V}_{\rm E}/\dot{V}{\rm O}_2$	32.9 ± 5.6	36.8 ± 4.9	35.7 ± 3.3	38.9 ± 4.3
$\dot{V}_{\rm E}/\dot{V}{\rm CO}_2$	37.6 ± 4.7	32.4 ± 3.2	31.3 ± 2.0	34.4±4.3

Note: Values are means \pm SD (n = 11). F, female; f_C , cardiac frequency; f_R , respiratory frequency; M, male; RER, respiratory exchange ratio; $\dot{V}CO_2$, CO_2 output; \dot{V}_E , minute ventilation; $\dot{V}_E\dot{V}CO_2$, ventilatory equivalent for CO_2 expired; $\dot{V}_E\dot{V}O_2$, ventilatory equivalent for O_2 uptake; $\dot{V}O_2$, O_2 uptake; $\dot{V}T_C$, mean inspiratory flow.

Table 3. Physiological responses to simulated climbing (excluding rest intervals).

	Rest	Mean	Peak
$\dot{V}O_2 (L \cdot min^{-1})$	0.5±0.1	1.49±0.24	2.39±0.51
$VO_2 (ml \cdot kg^{-1} \cdot min^{-1})$	6.9 ± 1.5	22.3 ± 3.1	35.8 ± 7.3
$\dot{V}CO_2$ (L·min ⁻¹)	0.4 ± 0.0	$1.27\!\pm\!0.20$	2.09 ± 0.60
RER	0.9 ± 0.1	0.83 ± 0.03	0.84 ± 0.06
$f_{\rm C}$ (beats·min ⁻¹)	88 ± 15	138±9	162 ± 14
$\dot{V}_{\rm E} ({\rm L} \cdot {\rm min}^{-1})$	14.9 ± 3.3	43.6 ± 7.6	67.2 ± 20.1
$V_{\mathrm{T}}\left(\mathrm{L}\right)$	0.8 ± 0.2	1.33 ± 0.26	1.74 ± 0.46
$f_{\rm R}$ (breath·min ⁻¹)	21.7 ± 5.7	35.2 ± 4.8	40.1 ± 6.4
$V_{\rm T}/T_{\rm I} ({\rm L\cdot s^{-1}})$	0.6 ± 0.8	1.5 ± 0.3	2.2 ± 0.6
$\dot{V}_{\rm E}/\dot{V}{\rm O}_2$	32.6 ± 5.3	29.4 ± 3.9	28.0 ± 3.9
$\dot{V}_{\rm E}/\dot{\rm V}{\rm CO}_2$	37.7 ± 4.6	34.2 ± 3.2	32.2 ± 2.6
[BLa] (mmol·L ⁻¹)	1.3 ± 0.4	3.2 ± 1.5	4.4 ± 2.1
$RPE_{Forearm}$	6.6 ± 0.8	13.0 ± 1.7	15.7 ± 2.2
RPE_{Body}	6.45 ± 0.9	13.4 ± 1.1	16.2 ± 1.0

Note: Values are means \pm SD (n = 11). [BLa], blood lactate concentration; $f_{\rm C}$, cardiac frequency; $f_{\rm R}$, respiratory frequency; RER, respiratory exchange ratio; RPE, rating of perceived exertion; $\dot{\rm V}{\rm CO}_2$, ${\rm CO}_2$ output; $\dot{\rm V}_{\rm E}$, minute ventilation; $\dot{\rm V}_{\rm E}|\dot{\rm V}{\rm CO}_2$, ventilatory equivalent for oxygen; $\dot{\rm V}_{\rm E}|\dot{\rm V}{\rm CO}_2$, ventilatory equivalent for carbon dioxide; $\dot{\rm V}{\rm O}_2$, ${\rm O}_2$ uptake; ${\rm V}_{\rm T}$, tidal volume; ${\rm V}_{\rm T}|T_{\rm I}$, mean inspiratory flow.

10 beats·min⁻¹ (91% \pm 0.1% HR_{max}); females = 155 \pm 19 beats·min⁻¹ (83% \pm 0.1% HR_{max})). Subjects spent 22.9% \pm 8.6% of climbing time above GET. Fig. 1 demonstrates a representative (single-subject) trace showing the temporal response of heart rate (Fig. 1A) and $\dot{V}O_2$ (Fig. 1B) for the competition period as a whole.

Recovery period

Selected cardiorespiratory responses during the 5-min postclimb rest period are shown in (Fig. 2). A repeated-measures ANOVA revealed main-effects for all measured variables (p < 0.001), with the results of post hoc analyses summarised below:

 $\dot{V}O_2$

Compared with pre-exercise values (6.9 \pm 1.5 mL·kg⁻¹·min⁻¹), $\dot{V}O_2$ remained significantly elevated at 1 min postexercise (30.9 \pm 6.3 mL·kg⁻¹·min⁻¹, p < 0.001, d = 14.9), 2 min postexercise (16.2 \pm 3.5 mL·kg⁻¹·min⁻¹, p < 0.001, d = 5.84), and 3 min postexercise (10.8 \pm 2.1 mL·kg⁻¹·min⁻¹, p = 0.01, d = 2.34), but was not different to baseline at 4 or 5 min postexercise (p > 0.05).

 \dot{V}_E

Compared with pre-exercise values (14.9 \pm 3.3 L·min⁻¹), $\dot{V}_{\rm E}$ remained significantly elevated at 1 min postexercise (58.0 \pm

15.9 L·min⁻¹, p = <0.001, d = 13.02), 2 min postexercise (36.7 \pm 7.2 L·min⁻¹, p = <0.001, d = 6.59), 3 min postexercise (26.9 \pm 5.6 L·min⁻¹, p = 0.001, d = 3.64), and 4 min postexercise (21.8 \pm 5.1 L·min⁻¹, p = 0.019, d = 2.09), but was not different to baseline at 5 min postexercise (p > 0.05).

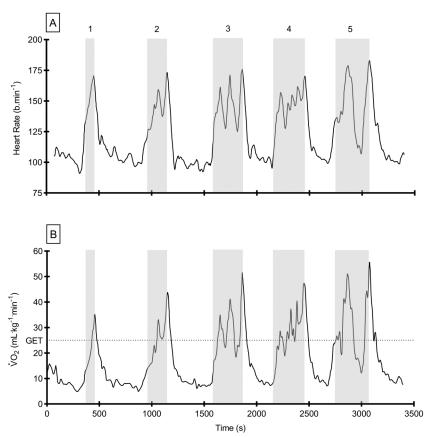
¹C Compared with pre-exercise values (88 \pm 15 b·min⁻¹), $f_{\rm C}$ remained significantly elevated at 1 min postexercise (149 \pm 12 beats·min⁻¹, p < 0.001, d = 3.99) and 2 min postexercise (113 \pm 9 beats·min⁻¹, p = 0.001, d = 1.66), but was not different to baseline at 3, 4, or 5 min postexercise (p > 0.05).

BLa concentration

Compared with pre-exercise vales (1.3 \pm 0.4 mmol·L⁻¹), BLa concentration remained significantly elevated at 1 min postexercise (4.0 \pm 2.3 mmol·L⁻¹, p = 0.009, d = 1.99) and was still elevated at 5 min postexercise (3.2 \pm 1.5 mmol·L⁻¹, p = 0.003, d = 2.02).

RPE

Compared with pre-exercise values (6.6 \pm 0.8), RPE_{Forearm} remained significantly elevated at 1 min postexercise (15 \pm 2.5, p < 0.001, d = 2.59) and was still elevated at 5 min postexercise (11.6 \pm 2.2, p < 0.001, d = 3.30). Compared with pre-exercise values (6.5 \pm 0.9), RPE_{Body} remained significantly elevated at 1 min postexercise (15.6 \pm 1.6, p < 0.001, d = 3.63) and was still elevated at 5 min postexercise (11.5 \pm 1.9, p < 0.001, d = 3.51).


Respiratory patterns

Respiratory patterns ($V_{\rm T}$ and $f_{\rm B}$) at the transition point from climbing to rest are shown in Fig. 3. A related-samples Wilcoxon Signed Rank test revealed that $f_{\rm B}$ decreased significantly immediately after exercise (47 ± 10 to 37 ± 7 breaths·min⁻¹; p=0.01, d=0.78), with a large and significant increase in $V_{\rm T}$ (1.4 ± 0.4 to 1.8 ± 0.4 L; p=0.006, d=0.83). $\dot{V}_{\rm E}$ remained unchanged (61.6 ± 15.8 vs. 65.0 ± 23.3 L·min⁻¹; p=0.594, d=0.16). There were no statistically significant changes in peak- to postexercise mean inspiratory flow (1.8 ± 0.5 vs. 2.2 ± 1.0 L·s⁻¹; p=0.327, d=0.35) or mean expiratory flow (2.2 ± 0.7 vs. 2.0 ± 0.8 L·s⁻¹; p=0.263, d=0.40).

Discussion

The aims of this study were to characterise the cardiorespiratory demands of an elite-standard bouldering competition, to assess the recovery rate of key physiological variables in the postclimb rest period, and to examine the degree to which climbing exerted control over respiratory patterns. We made several key Callender et al. 165

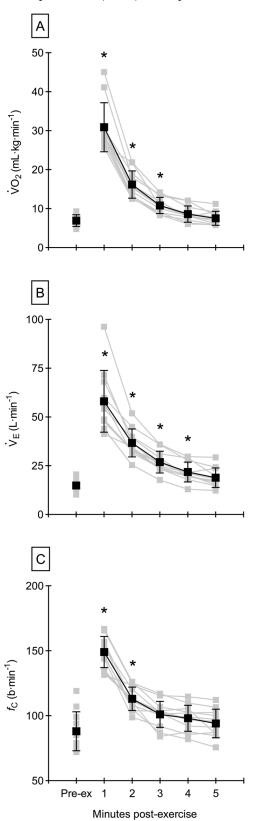
Fig. 1. Representative heart rate (A) and oxygen uptake $(\dot{V}O_2)$ (B) trace of 1 male subject for the competition duration. The attempt intervals are highlighted (1–5, shaded areas); note the variation in duration with early success or the requirement for multiple attempts. The within-attempt nadirs in heart rate and $\dot{V}O_2$ are due to failed climb attempts. b·min⁻¹, beats·min⁻¹; GET, gas exchange threshold.

observations: (i) competitive bouldering evokes substantial cardiorespiratory demand, as evidenced by a high fraction of $\dot{V}O_{2max}$ and a prolonged time above GET; (ii) climbing appears to impose a constraint on tidal volume expansion such that ventilation is maintained via elevated respiratory frequency; and (iii) cardiorespiratory parameters recover to baseline within 2–4 min of the rest period.

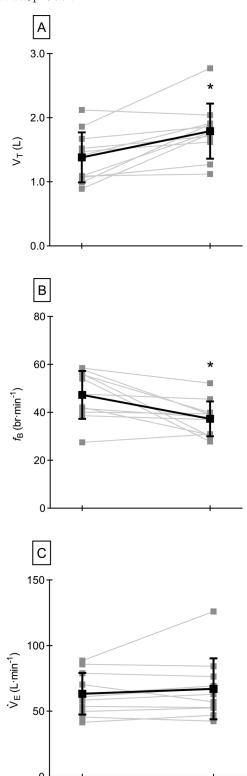
Simulated competition

To our knowledge, this is the first study to examine cardiorespiratory function during competitive bouldering, but also during competitive climbing of any discipline. Our data suggest that competition bouldering is associated with a considerable cardiorespiratory demand. The attempt intervals (a cumulative intermittent exercise period of 18.9 \pm 2.7 min) evoked a mean $\dot{V}O_2$ of 22.3 \pm 3.1 mL·kg⁻¹·min⁻¹ (~47% $\dot{V}O_{2max}$), \dot{V}_{E} of 43.6 \pm 7.6 L·min⁻¹ (~38% \dot{V}_{Emax}), and f_{C} of 138 \pm 9 beats·min⁻¹ (~75% HR_{max}). Peak values reached higher fractions of treadmill-determined values $(\dot{V}O_2 = \sim 75\% \, \dot{V}O_{2max}; \, \dot{V}_E = \sim 58\% \, \dot{V}_{Emax}; \, f_C = \sim 88\% \, HR_{max}; \, Table \, 3$ and Fig. 1). Moreover, subjects spent the majority of exercise time close to the individual GET, with 23% \pm 9% of total attempt-interval time above the GET. For an activity requiring relatively brief but repeated periods of high-intensity muscular effort (30-40 s; White and Olsen 2010; Medernach et al. 2016), peak values were remarkably similar to those reported during difficult lead/roped climbing of much greater durations (150-240 s; Watts et al. 2000; de Geus et al. 2006).

An important related observation was that, despite aerobic exercise constituting a very small proportion of weekly training


volume in our group (1.3 \pm 1.5 h·week $^{-1}$), treadmill-determined $\dot{V}O_{2max}$ was above the age- and sex-specific predicted norm; males, particularly, exhibited values of 53 \pm 4.1 mL·kg⁻¹·min⁻¹, which was 111% predicted (Kaminsky et al. 2015) (Table 2). These values are similar to those seen in highly trained lead climbers (de Geus et al. 2006; Magalhaes et al. 2007), trained games players (Hamilton et al. 1991), and only slightly below values measured by some in trained distance runners (McLaughlin et al. 2010). Thus, our elite boulderers exhibited noteworthy aerobic capacities, even though climbing is typically considered a resistance-based activity (Kuepper et al. 2009). Our data, therefore, support the notion that aerobic energy pathways might make an important metabolic contribution during climbing, alongside the phosphocreatine system in particular (de Moraes Bertuzzi et al. 2007). It is also likely that bouldering itself confers a potent aerobic training stimulus, similar to that observed during longer-duration climbs (Mermier et al. 1997; Rodio et al. 2008).

During the simulated competition, each 5-min attempt interval required a mean 4.2 ± 2.2 discrete efforts, with very brief betweeneffort respites of <30 s (White and Olsen 2010; Medernach et al. 2016). Aerobic contributions to energy metabolism tend to increase with successive bouts of intense exercise (Bogdanis et al. 1996). Thus, the basis for the high cardiorespiratory demands observed presently may lie in the requirement for successive high-intensity efforts, particularly since our data show minimal recovery of cardiorespiratory parameters in the first 60 s of rest (see below).


Recovery period

We assessed selected cardiorespiratory parameters ($\dot{V}O_2$, \dot{V}_E , and f_C) during seated rest following the final attempt interval,

Fig. 2. Oxygen uptake ($\dot{V}O_2$) (A), minute ventilation (\dot{V}_E) (B), and heart rate (f_C) (C) in the 5-min recovery period immediately following the final climb. b·min $^{-1}$, beats·min $^{-1}$. *, Significantly different versus pre-exercise (Pre-ex) values, p < 0.05.

Fig. 3. Tidal volume ($V_{\rm T}$) (A), respiratory frequency ($f_{\rm B}$) (B), and minute ventilation ($\dot{V}_{\rm E}$) (C) during 8 breaths at peak-exercise (Peak-ex) versus 8 breaths immediately after the abrupt cessation of exercise (Post-ex). br·min⁻¹, breaths·min⁻¹. *, Significantly different versus Peak-ex values, p < 0.05.

Peak-ex

Post-ex

Callender et al. 167

and while there was minimal recovery in the first 60 s, these metrics reflected baseline values by 4 min (Fig. 2). Oxidative metabolism is an important component in the replenishment of phosphocreatine following high-intensity exercise (Taylor et al. 1983; McMahon and Jenkins 2002), and likely explains the elevated aerobic requirement we observed during recovery. That the recovery period was assessed following the final climb of the final interval suggests that highly trained climbers will generally recover cardiorespiratory function in-between the attemptintervals. Our data also indicate that a superior cardiorespiratory fitness (in combination with local muscular factors) might be an important mediator of competitive bouldering performance, although this requires further investigation.

Perceived exertion did not recover with the same rapidity. After 5 min of rest, RPE_{Forearm} and RPE_{Body} remained significantly elevated above baseline (11.6 \pm 2.2 and 11.5 \pm 1.9, respectively). Given the rapid recovery of cardiorespiratory variables, the elevated perceptual scores at this juncture likely reflect a high degree of peripheral neuromuscular effort. BLa concentration also remained significantly elevated above baseline after 5 min of rest (3.2 \pm 1.5 vs. 1.3 \pm 0.4 mmol·L $^{-1}$). This was somewhat expected, given that it can take at least 30 min for lactate clearance to return values towards baseline following exercise intervals above the lactate threshold (Menzies et al. 2010). Lactate removal may have been facilitated by active recovery during rest (Watts et al. 2000), but this would likely have impinged on recovery of cardiorespiratory parameters (Watts et al. 2000; Yamagishi and Babraj 2019).

Respiratory patterns

The thoracic muscles function to ventilate the lungs while simultaneously stiffening the spine (Hodges et al. 2001, 2005) and maintaining upper-torso/arm position during exercise (Celli et al. 1988). Strenuous upper-body exercise is thought to exacerbate competition for the ventilatory and nonventilatory functions of respiratory muscles (Tiller et al. 2017a), thereby influencing respiratory function. In an effort to quantify the degree to which climbing influenced breathing patterns, we compared the data from 8 respiratory cycles at peak exercise with 8 respiratory cycles immediately after the cessation of exercise when external loads on the torso were zero but $V_{\rm E}$ was assumed to have remained elevated. When the high thoracic loads imposed by climbing were relinquished, we noted an abrupt and significant increase in V_T (1.4 \pm 0.4 to 1.8 \pm 0.4 L) with a large effect (d = 0.83), while $V_{\rm E}$ remained unchanged (Fig. 3). These findings are congruent with previous observations that $V_{\rm E}$ during upper-body exercise is achieved primarily via increases in respiratory frequency rather than V_T (Takano 1993; Tiller et al. 2017b). Our data show, for the first time, that climbing likely imposes a degree of constraint on the ribcage, precluding the effective expansion of V_T.

Our respiratory data also support the contention that isometric contractions associated with holding static positions during climbing may disrupt normal respiratory patterns (Baláš et al. 2014). We would anticipate this to be even more marked during steeper boulder problems during which greater activation of trunk muscles would be required to maintain position on handand foot-holds (Grzybowski et al. 2014). Indeed, data recorded during bouldering shows intermittently raised mouth pressures, congruent with elevated blood pressures, which is characteristic of periodic breath-holds or Valsalva-like manoeuvres (Callender et al. 2020). Such breathing patterns may function to elevate thoracoabdominal pressure (Hodges et al. 2005), which would, in turn, provide postural support to the trunk, as observed during heavy resistance exercise (Hackett and Chow 2013). Irrespective, ventilatory equivalents ($\dot{V}_E/\dot{V}O_2$ and $\dot{V}_E/\dot{V}CO_2$) were relatively well-preserved, and actually increased above the normal range at peak exercise (Koch et al. 2009). Thus, there is no evidence of ventilatory insufficiency during climbing. It is possible, therefore,

that tidal volume constraint and/or periodic breath-holding may be a normal (even important) response to strenuous climbing manoeuvres, particularly as evidence of this phenomena has been observed to be independent of climbing difficulty (Callender et al. 2020).

Technical considerations

First, we assessed maximal aerobic capacities in our climbers via an incremental exercise test performed on a motorised treadmill. Treadmill exercise is generally considered to evoke higher values for VO_{2peak} during exercise testing than cycle ergometry (Ross et al. 2003), likely because of the larger muscle mass active during the former. We observed higher values during maximal treadmill running than those derived from highly trained climbers during maximal cycle ergometry (~46 mL·kg⁻¹·min⁻¹; Sheel et al. 2003) or arm-crank ergometry (37 mL·kg⁻¹·min⁻¹; de Moraes Bertuzzi et al. 2007). Moreover, while the treadmill test does not replicate the movement patterns of climbing, Watts and Drobish (1998) observed higher values for VO_{2peak} during an incremental treadmill test when compared with values achieved during a bespoke climbing test performed on a vertical treadmill $(50.5 \pm 7.0 \text{ vs. } 31.7 \pm 4.6 \text{ mL·kg}^{-1} \cdot \text{min}^{-1})$. Thus, while the treadmill is not considered to be mode-specific, we are confident that our data reflect the true maximal aerobic capacities of elite rock climbers

Second, it is worth noting that we utilised a mixed-sex cohort. Given the discrepancies in anthropometric and physical attributes between male and female climbers, we decided to report group mean values in addition to means for the male and female subgroups. Because our female cohort comprised only 4 subjects, we were unable to make statistical comparisons between groups, and larger studies into sex-differences among highly trained climbers would likely prove insightful.

Finally, simulated conditions rarely replicate those of a real contest, and there is substantial variation in the style and steepness of boulder problems across competitions. Indeed, BLa concentrations are different between real and simulated bouldering competitions, even when matched for standard (La Torre et al. 2009). Nevertheless, we made a concerted effort to replicate several key factors of Olympic-format bouldering, including the environment, wall structure, and technicalities of the boulder problems. Our subjects were also of the standard who typically compete in international competition and were encouraged to treat the simulation as a formal contest. Accordingly, our data provide the most accurate representation to date of the cardiorespiratory responses to elite-level bouldering.

In conclusion, the high peak fractions of \dot{VO}_{2max} , prolonged time above the GET, and rapid recovery of cardiorespiratory function, suggest that bouldering requires a considerable aerobic contribution to energy metabolism. We also report evidence of tidal volume constraint at peak exercise, the implications of which require further study. Further studies are also warranted to explore the effect of targeted cardiorespiratory training on climbing performance.

Conflict of interest statment

N.A.C. is the owner of a commercial indoor climbing gym. No other authors have any competing interests to declare.

Acknowledgements

We wish to thank The Climbing Works (Sheffield, UK) for the use of their facilities during data collection, and the climbers who gave their time to participate. We would also like to thank Dr. Dave Winterborne for his assistance with data analysis. N.B.T. is funded by a postdoctoral fellowship from the Tobacco-Related Disease Research Program (TRDRP; award no. T31FT1692). **Author contributions**: N.A.C., T.N.H., and N.B.T. conceived the research

and conducted all experiments. N.A.C. and N.B.T. analysed data and drafted the manuscript. All authors read and approved the manuscript.

References

- Arbulu, A., Usabiaga, O., and Castellano, J. 2015. A time motion analysis of lead climbing in the 2012 men's and women's world championship finals. Int. J. Perform. Anal. Sport. 15(3): 924–934. doi:10.1080/24748668.2015.11868841.
- Baláš, J., Panáčková, M., Strejcová, B., Martin, A.J., Cochrane, D.J., Kaláb, M., et al. 2014. The relationship between climbing ability and physiological responses to rock climbing. Sci. World J. 2014: 678387. doi:10.1155/2014/678387. PMID:24587742.
- Beaver, W.L., Wasserman, K., and Whipp, B.J. 1986. A new method for detecting anaerobic threshold by gas exchange. J. Appl. Physiol. **60**(6): 2020–2027. doi:10.1152/jappl.1986.60.6.2020. PMID:3087938.
- Billat, V., Palleja, P., Charlaix, T., Rizzardo, P., and Janel, N. 1995. Energy specificity of rock climbing and aerobic capacity in competitive sport rock climbers. J. Sports Med. Phys. Fitness. 35(1): 20–24. PMID:7474988.
- Bogdanis, G.C., Nevill, M.E., Boobis, L.H., and Lakomy, H.K. 1996. Contribution of phosphocreatine and aerobic metabolism to energy supply during repeated sprint exercise. J. Appl. Physiol. 80(3): 876–884. doi:10.1152/jappl.1996.80.3.876. PMID:8964751.
- Borg, G.A. 1982. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14(5): 377–381. doi:10.1249/00005768-198205000-00012. PMID:7154893.
- Callender, N.A., Hart, P.W., Ramchandani, G.M., Chaggar, P.S., Porter, A.J., Billington, C.P., and Tiller, N.B. 2020. The exercise pressor response to indoor rock climbing. J. Appl. Physiol. 129: 404–409. doi:10.1152/japplphysiol. 00357.2020. PMID:32644913.
- Celli, B., Criner, G., and Rassulo, J. 1988. Ventilatory muscle recruitment during unsupported arm exercise in normal subjects. J. Appl. Physiol. 64(5): 1936–1941. doi:10.1152/jappl.1988.64.5.1936. PMID:3391894.
- Cohen, J. 1988. Statistical power analysis for the behavioural sciences. 2nd edition. Routledge, New York. doi:10.1016/b978-0-12-179060-8.50015-3.
- de Geus, B., O'Driscoll, S.V., and Meeusen, R. 2006. Influence of climbing style on physiological responses during indoor rock climbing on routes with the same difficulty. Eur. J. Appl. Physiol. **98**(5): 489–496. doi:10.1007/s00421-006-0287-5. PMID:17021787.
- de Moraes Bertuzzi, R.C., Franchini, E., Kokubun, E., and Kiss, M.A.P.D.M. 2007. Energy system contributions in indoor rock climbing. Eur. J. Appl. Physiol. 101(3): 293–300. doi:10.1007/s00421-007-0501-0. PMID:17602238.
- Draper, N., Giles, D., Schöffl, V., Konstantin Fuss, F., Watts, P., Wolf, P., et al. 2015. Comparative grading scales, statistical analyses, climber descriptors and ability grouping: International Rock Climbing Research Association position statement. Sport. Technol. 8(3–4): 88–94. doi:10.1080/19346182.2015.1107081.
- Grzybowski, C., Donath, L., and Wagner, H. 2014. Association between trunk muscle activation and wall inclination during various static climbing positions: implications for therapeutic climbing. Sportverletz Sportschaden, 28(2): 75–84. doi:10.1055/s-0034-1366552. PMID:24963738.
- Hackett, D.A., and Chow, C.-M. 2013. The Valsalva maneuver: its effect on intraabdominal pressure and safety issues during resistance exercise. J. Strength Cond. Res. 27(8): 2338–2345. doi:10.1519/JSC.0b013e31827de07d. PMID:23222073.
- Hamilton, A.L., Nevill, M.E., Brooks, S., and Williams, C. 1991. Physiological responses to maximal intermittent exercise: Differences between endurancetrained runners and games players. J. Sports Sci. 9(4): 371–382. doi:10.1080/ 02640419108729897. PMID:1787554.
- Hodges, P.W., Cresswell, A.G., Daggfeldt, K., and Thorstensson, A. 2001. In vivo measurement of the effect of intra-abdominal pressure on the human spine. J. Biomech. 34(3): 347–353. doi:10.1016/S0021-9290(00)00206-2. PMID:11182126.
- Hodges, P.W., Eriksson, A.E.M., Shirley, D., and Gandevia, S.C. 2005. Intraabdominal pressure increases stiffness of the lumbar spine. J. Biomech. 38(9): 1873–1880. doi:10.1016/j.jbiomech.2004.08.016. PMID:16023475.
- Kaminsky, L.A., Arena, R., and Myers, J. 2015. Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing: data from the Fitness Registry and the Importance of Exercise National Database. Mayo Clin. Proc. 90: 1515–1523. doi:10.1016/j.mayocp.2015.07.026. PMID:26455884.

- Koch, B., Schäper, C., Ittermann, T., Spielhagen, T., Dörr, M., Völzke, H., et al. 2009. Reference values for cardiopulmonary exercise testing in healthy volunteers: the SHIP study. Eur. Respir. J. 33(2): 389–397. doi:10.1183/09031936.00074208. PMID:18768575.
- Kuepper, T., Morrison, A., Gieseler, U., and Schoeffl, V. 2009. Sport climbing with pre-existing cardio-pulmonary medical conditions. Int. J. Sports Med. 30(06): 395–402. doi:10.1055/s-0028-1112143. PMID:19199210.
- La Torre, A., Crespi, D., Serpiello, F.R., and Merati, G. 2009. Heart rate and blood lactate evaluation in bouldering elite athletes. J. Sports Med. Phys. Fitness. 49(1): 19. PMID:19188891.
- Magalhaes, J., Ferreira, R., Marques, F., Olivera, E., and Soares, J.A.A. 2007. Indoor climbing elicits plasma oxidative stress. Med. Sci. Sport. Exerc. 39(6): 955–963. doi:10.1249/mss.0b013e318038f728. PMID:17545885.
- McLaughlin, J.E., Howley, E.T., Bassett, D.R, Jr., Thompson, D.L., and Fitzhugh, E.C. 2010. Test of the classic model for predicting endurance running performance. Med. Sci. Sports Exerc. 42(5): 991–997. doi:10.1249/ MSS.0b013e3181c0669d. PMID:19997010.
- McMahon, S., and Jenkins, D. 2002. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 32(12): 761–784. doi:10.2165/00007256-200232120-00002. PMID:12238940.
- Medernach, J.P., Kleinoeder, H., and Lötzerich, H.H.H. 2016. Movement demands of elite female and male athletes in competitive bouldering. J. Phys. Educ. Sport. 16(3). doi:10.7752/jpes.2016.03132.
- Menzies, P., Menzies, C., McIntyre, L., Paterson, P., Wilson, J., and Kemi, O.J. 2010. Blood lactate clearance during active recovery after an intense running bout depends on the intensity of the active recovery. J. Sports Sci. 28(9): 975–982. doi:10.1080/02640414.2010.481721. PMID:20544484.
- Mermier, C.M., Robergs, R.A., McMinn, S.M., and Heyward, V.H. 1997. Energy expenditure and physiological responses during indoor rock climbing. Br. I. Sports Med. 31(3): 224–228. doi:10.1136/bism.31.3.224. PMID:9298558.
- Br. J. Sports Med. 31(3): 224–228. doi:10.1136/bjsm.31.3.224. PMID:9298558. Michailov, M.L., Mladenov, L.V., and Schöffl, V. 2009. Anthropometric and strength characteristics of world-class boulderers. Med. Sport. 13(4): 231–238. doi:10.2478/v10036-009-0036-z.
- Rodio, A., Fattorini, L., Rosponi, A., Quattrini, F.M., and Marchetti, M. 2008. Physiological adaptation in noncompetitive rock climbers: good for aerobic fitness? J. Strength Cond. Res. 22(2): 359–364. doi:10.1519/JSC.0b013e3181635cd0. PMID:18550948.
- Ross, R.M., Beck, K.C., Casaburi, R., Johnson, B.D., Marciniuk, D.D., Wagner, P.D., and Weisman, I.M. 2003. ATS/ACCP Statement on Cardiopulmonary Exercise Testing (multiple letters). Am. J. Respir. Crit. Care Med. 167(10): 1451–1451. doi:10.1164/ajrccm.167.10.950. PMID:12738602.
- Sheel, A.W., Seddon, N., Knight, A., McKenzie, D.C., and R Warburton, D.E. 2003. Physiological responses to indoor rock-climbing and their relationship to maximal cycle ergometry. Med. Sci. Sports Exerc. 35(7): 1225–1231. doi:10.1249/01.MSS.0000074443.17247.05. PMID:12840646.
- Takano, N. 1993. Ventilatory responses during arm and leg exercise at varying speeds and forces in untrained female humans. J. Physiol. 468(1): 413-424. doi:10.1113/jphysiol.1993.sp019779. PMID:8254516.
- Taylor, D.J., Bore, P.J., Styles, P., Gadian, D.G., and Radda, G.K. 1983. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol. Biol. Med. 1(1): 77–94. PMID:6679873.
- Tiller, N.B., Campbell, I.G., and Romer, L.M. 2017a. Influence of upper-body exercise on the fatigability of human respiratory muscles. Med. Sci. Sports Exerc. 49(7): 1461–1472. doi:10.1249/MSS.000000000001251. PMID:28288012.
- Tiller, N.B., Price, M.J., Campbell, I.G., and Romer, L.M. 2017b. Effect of cadence on locomotor-respiratory coupling during upper-body exercise. Eur. J. Appl. Physiol. 117(2): 279–287. doi:10.1007/s00421-016-3517-5. PMID:28032253.
- Watts, P.B., and Drobish, K.I.P.M. 1998. Physiological responses to simulated rock climbing at different angles. Med. Sci. Sports Exerc. 30(7): 1118–1122. doi:10.1097/00005768-199807000-00015. PMID:9662682.
- Watts, P.B., Daggett, M., Gallagher, P., and Wilkins, B. 2000. Metabolic response during sport rock climbing and the effects of active versus passive recovery. Int. J. Sports Med. 21(03): 185–190. doi:10.1055/s-2000-302. PMID:10834350.
- White, D.J., and Olsen, P.D. 2010. A time motion analysis of bouldering style competitive rock climbing. J. Strength Cond. Res. 24(5): 1356–1360. doi:10.1519/JSC.0b013e3181cf75bd. PMID:20386481.
- Yamagishi, T., and Babraj, J. 2019. Active recovery induces greater endurance adaptations when performing sprint interval training. J. strength Cond. Res. 33(4): 922–930. doi:10.1519/JSC.0000000000002787. PMID:30102686.